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In the electrical domain, a non-technical loss often refers to energy used but not paid for by a consumer. 
The identification and detection of this loss is important as the financial loss by the electricity supplier has 
a negative impact on revenue. Several statistical and machine learning classification algorithms have been 
developed to identify customers who use energy without paying. These algorithms are generally assessed 
and compared using results from a confusion matrix. We propose that the data for the performance 
metrics from the confusion matrix be resampled to improve the comparison methods of the algorithms. 
We use the results from three classification algorithms, namely a support vector machine, k-nearest 
neighbour and naïve Bayes procedure, to demonstrate how the methodology identifies the best classifier. 
The case study is of electrical consumption data for a large municipality in South Africa.

Significance: 
• The methodology provides data analysts with a procedure for analysing electricity consumption in an

attempt to identify abnormal usage.

• The resampling procedure provides a method for assessing performance measures in fraud detection
systems.

• The results show that no single metric is best, and that the selected metric is dependent on the objective 
of the analysis.

Introduction
Revenue that is lost due to the difference between electricity supplied and electricity purchased is partitioned into 
two classes. The first class resulting from transmission and other infrastructural limitations is labelled as technical 
losses, whilst the second class, the majority of which are a result of meter tampering or bypassing, is labelled as 
non-technical losses1-3 (NTL). Estimates of losses worldwide are in the billions4,5 of US dollars and suppliers of 
electricity have expressed concern over these losses and the sustainability of the supply6,7. 

The literature related to fraudulent electricity losses is detailed with the first traceable case as early as the 19th 
century claiming, ‘unprincipled persons had availed themselves of the opportunity to steal electricity’8,9. More 
recent literature is a result of the computational hardware and software developments over the last two decades. 
Galvan et al.10 brought to the fore statistical methods for identifying ‘abnormal’ consumer behaviour in the electrical 
domain. This has seen fraud detection systems from finance, banking and insurance being applied to the electricity 
domain. The review by Messinis and Hatziargyriou11 of the methods applied to detect electricity theft provides 
compelling evidence that the research domain is exciting and extensive. The review informs researchers of the 
types of data used in fraud detection, the algorithms that have been proposed and clarifies performance metrics 
for comparing the algorithms. 

A comprehensive list of the classifiers used in electricity fraud detection systems can be found in Messinis and 
Hatziargyriou11. Notably these include support vector machines (SVM), naïve Bayesian (NB) methods and k-nearest 
neighbour (k-NN) classifiers – the algorithms used in this study. The field has not stagnated; recent computational 
methods include convolutional neural networks3 and ensemble-based classifiers7 whilst time series methods have 
been explored2. In many of these studies, the common methodological approach is to assess the classifier by 
considering results from a test data set captured in a confusion matrix summary and reported as a performance 
measure. Several performance measures are used in the literature and for the most part are defined to reflect 
accuracy and precision of the classifiers.

The confusion matrix is a 2 x 2 table summarising the predicted versus the actual frequency counts for a binary 
classification model. The table, used in the financial sector to identify fraudulent customers, is best suited to data 
sets for which the number of observations in the two classes are similar or moderately similar. Ideally for a model, 
the predicted results match the actual counts. In the confusion matrix, this implies that the frequencies of the true 
positives are the same as the actual positives and the frequencies of the true negatives are the same as the actual 
negatives. In addition, the false negatives and false positives should be zero. The confusion matrix, in Table 1, was 
used in studies by Messinis et al.12 and Li et al.3 to assess classification models, whilst Guo et al.13 addressed the 
problem for data sets which are highly imbalanced.

Our research study had a dual objective. The first objective was to use a resampling approach to assess the 
performance of the classifier using a data set from the Nelson Mandela Bay Municipality. The second objective was 
to add to the South African literature on fraud detection in the electrical domain. 
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Table 1:	 A 2 × 2 confusion matrix for two classes

True class
Predicted class

Total
Positive Negative

Positive True positive (TP) False negative (FN) Actual positive

Negative False positive (FP) True negative (TN) Actual negative

Total Predicted positive Predicted negative Total counts

Literature review
Electricity fraud detection methods were adapted to a large extent 
from the methods used to detect fraudulent activity in the banking, 
insurance and telecommunications sector. Bolton and Hand14 review 
classification models used for binary identification, albeit in the finance 
sector. Although the type of data and the ratio of fraudulent activity differ 
between the financial and electrical domains, the methods are similar, 
hence they are adapted accordingly. 

The last two decades have seen considerable research directed towards 
electricity fraud. From the earlier work by Galvan et al.10 who evaluated 
electricity usage in the Spanish farming sector, to Davidson15 and Fourie 
and Calmeyer16 who introduced NTL research into the South African 
context, to the behavioural identification of Hu et al.17, the opportunity 
for research is extensive. Examples of research using fraud detection 
classification in electricity include Nizar et al.18 who used a NB classifier 
and decision tree algorithm to assess the consumption load profile of 
customers at different time intervals. Nagi et al.19 used a SVM classifier 
to detect fraud for a power system in Malaysia whilst in India, Depuru 
et al.20 used smart meter data in their SVM classification study. Coma-
Puig et al.21 used k-NN and SVM classifiers, amongst others, to evaluate 
electricity data from Spain, whilst Li et al.3 used several classifiers, 
including a hybrid random forest classifier, to evaluate data from Ireland. 
In each study, performance metrics were used to assess which classifier 
could be considered the best. For a review on classification algorithms 
in the electricity fraud detection sector the reader is referred to the study 
by Messinis and Hatziargyriou11.

To assess classifiers, predicted data are summarised as a confusion 
matrix and often reported as a performance measure. Messinis and 
Hatziargyriou11 clarify the pitfalls of using a single performance measure 
to assess a classifier. As an example, accuracy is claimed to be the 
most commonly used metric from a confusion matrix. Accuracy is 
defined as the percentage of correct classifications in total. However, 
this statistic summarises both classes simultaneously and if the data 
set is imbalanced, the correct classification of the larger class could 
distort the results. As a result, researchers have chosen to include 
several performance measures when reporting the assessment of a 
classifier. Coma-Puig et al.21 used the performance measures recall and 
f-measure whilst Ghori et al.7 and Li et al.3 opted to include precision 
as one of their measures. There is little consensus on which metric is 
best; however, there is consensus that more than one metric should be 
reported. Messinis and Hatziargyriou11 list seven performance metrics 
used in their review. Their tabulated summary shows that accuracy is 
the most common metric, followed by detection rate, precision and false 
positive rate. Definitions and justifications of metrics used in this study 
are defined in the methodology. 

Eskom, a state-owned utility, is the primary energy supplier in South 
Africa, and generates almost 95% of South Africa’s energy.22 Eskom 
initiated a campaign called Operation Khanyisa in an effort to combat 
electricity theft in South Africa.6 The campaign reported that Eskom lost 
approximately USD300 million (ZAR5 billion) in 2016 as a consequence 
of NTL. Losses to this extent are unsustainable and place at risk the 
service provider’s ability to ensure a steady supply of power. 

Apart from Davidson15 and Fourie and Calmeyer16, there has been limited 
research focused on identifying electricity fraud in the South African 
sector. Doorduin et al.23 used a simulation experiment to demonstrate how 
to identify customers whose consumption was irregular. Other industries 
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within the South African context have developed classification models 
specific to their needs. Examples include Stalmans and Irwin24 who 
used classification algorithms in cyber-computing to identify malware 
infections on a local electricity network. Breed and Verster25 focused on 
the banking sector whilst Govender et al.26 applied the methods in the 
forecasting of solar irradiance. The scarcity of research in the South 
African electricity fraud detection sector provides the opportunity for this 
study. 

The data
The data set was obtained from a company that was contracted by the 
Nelson Mandela Bay Municipality to identify possible fraudulent activity 
in an effort to reduce NTL in the municipality. The data consisted of 
customers’ historical electricity consumptions in kilowatt-hours (kWh) 
for 24 months from March 2013 to February 2015. Each customer’s 
consumption pattern was categorised as either honest or fraudulent, 
based on an inspection undertaken by onsite inspectors. Fraudulent 
customers were defined as those customers where evidence of meter 
tampering was found by the on-site inspection whilst the remainder 
were defined as honest. In terms of the confusion matrix, positive values 
identify the fraudulent consumers and negative values identify the honest 
consumers.

The data set consisted of 3156 customers, of which 2420 (77%) were 
categorised as honest and 736 (23%) as fraudulent. A sample of this 
data set is shown in Table 2. The data were pre-processed and sorted 
for analytical routines using freeware R v.3.6.127 and licensed TIBCO 
software Statistica28 v.13. 

Table 2:	 A sample of the data set

Customer
Mar-13

(kWh)

Apr-13

(kWh)

Feb-15

(kWh)
Class label

1 222.3 209 148.4 Fraudulent

2 240.5 192.5 334.4 Honest

3 459.3 419.1 711 Honest

4 128.5 128.5 121.5 Fraudulent

5 957.2 889.2 150.7 Honest

3156 134.9 158 83.6 Honest

Although not all NTLs are a result of dishonest activities, for the purposes 
of this study, NTLs are collectively referred to as fraudulent activities. 
This definition allows for the use of a data-oriented supervised approach 
as the data available for analytics were the monthly electrical usage per 
customer as well as whether the consumer was labelled as an honest 
client or a fraudulent client. 

Methodology
Data-oriented supervised methods require that the source data can 
be partitioned into two classes as defined by the research study. In 
electricity fraud, the data must be partitioned into either fraudulent or non-
fraudulent (honest) classes whilst the independent terms can include 
several factors. There are two methods available to collect consumer 
electricity usage: older meters or those referred to as smart meters. 
Smart meters have the capability to record electrical use at different time 
intervals (i.e. hourly, daily, monthly) as well as other information such 
as the location or area of the meter and the billing costs of the user.20 
Older meters have less reliable data in that consumption readings are 
often only available on a monthly basis and, in most cases, are obtained 
by manual inspection, monthly estimation or consumer feedback. A 
limitation to this study is that the data available are predominantly from 
older meter readings and are subject to human capturing errors. In this 
study, three classification algorithms were assessed on the case study 
data following the procedure in Figure 1. 

https://doi.org/10.17159/sajs.2020/8189
www.sajs.co.za


3 Volume 116| Number 9/10 
September/October 2020

Research Article
https://doi.org/10.17159/sajs.2020/8189

SVM, support vector machine; KNN, k-nearest neighbour classifier; NB, naïve Bayesian

Figure 1:	 General framework of the methodology

The data were partitioned into a training set and a test set, after which the 
training data were used by classifiers SVM, k-NN and NB to determine 
estimates for the prediction model. The model was then assessed by 
using the test data set to predict the classification of a consumer based 
on their electricity consumption and then the results were compared 
against the actual classification. These data were then summarised in a 
confusion matrix. The sequential procedure followed was: 

•	 Step 1: Pre-process the data by cleaning and sorting as required. 
Once the data are in the format required by the software for 
analytical requirements, proceed to Step 2.

•	 Step 2: Randomly partition two thirds of the sample to a training 
data set and the remaining one third to a test data set.

•	 Step 3: Estimate the parameters of the model using the training 
data.

•	 Step 4: Test the performance of a fitted model on the test data set 
as follows:

-- Predict the class membership for everyone in the test set.

-- Compute a confusion matrix.

-- Calculate performance metrics from results in the confusion 
matrix.

-- Repeat Steps 2 to 4 p times to obtain p confusion matrices 
and p estimates for each metric. 

•	 Step 5: Summarise the performance metrics and assess the 
statistics inferentially.

Four performance measures – accuracy, detection rate, precision and 
true negative rate – were used in this research. Accuracy, detection 
rate and precision are used extensively in the literature, and therefore it 
was important that they be included in this study. True negative rate is 
selected as the fourth measure as it complements precision by providing 
information to the researcher about the classifier’s ability to correctly 
select the second class of consumers relative to the actual numbers in 
that class. The measures are defined using the notation from Table 1. 

These measures are summarised for the p number of iterations and 
thereafter assessed inferentially. We used analysis of variance (ANOVA) 
and Bonferroni post-hoc comparisons to assess the performance 

metrics. The ANOVA methodology compares the three mean responses 
for the classifiers for the four performance measures. In cases where the 
three mean responses were found to differ, the post-hoc comparisons 
were used to identify where the differences were. The final step in 
the methodology was the use of Cohen’s D to assess the practical 
significance of the post-hoc comparisons. 

Results and discussion
Each classifier was trained on the same folds of training data and 
thereafter the corresponding test data sets were used to obtain results 
for the confusion matrix. Each randomly selected training set consisted 
of 2104 consumers, of which approximately 77% were categorised as 
honest and 23% as fraudulent. The optimal parameters for the SVM 
classifier were γ=1.3542 and C=2.1639, while for the k-NN classifier, 
k was 20 and the optimal distance metric was the City Block. 

A total of p=500 iterations was used to obtain 500 randomly obtained 
test set folds, with each fold containing 1052 consumers, of which 
approximately 77% were categorised as honest and 23% were 
fraudulent. For the 500 test data sets, 500 confusion matrices were 
calculated for each classifier. The first iteration of the SVM classifier test 
data set is shown in Table 3. The results show that, of the 264 fraudulent 
customers, the classifier was able to correctly predict 196 customers – 
a precision of 74.4%. Similarly, the accuracy of the classifier was 88.2%.

Table 3:	 Predicted classes for the first iteration of the support vector 
machine classifier

True class
Predicted class

Total
Positive (fraudulent) Negative (honest)

Positive (fraudulent) 196 68 264

Negative (honest) 26 762 788

Total 222 830 1052

Using the results from each iteration  for each algorithm, 500 confusion 
matrices were obtained, and the four performance measures were 
summarised. The summary statistics for each metric and each classifier 
are shown in Table 4.

Table 4:	 Performance measures for the three classifiers

Metric Classifier Mean s.d. Minimum Maximum

Accuracy

SVM 87.12% 0.88% 83.8% 89.9%

k-NN 85.58% 0.91% 82.9% 88.2%

NB 82.02% 1.04% 78.9% 85.6%

Detection rate

SVM 67.98% 2.77% 58.2% 75.7%

k-NN 61.68% 3.09% 52.5% 71.0%

NB 73.38% 2.64% 65.5% 80.5%

Precision

SVM 74.56% 2.65% 67.7% 81.9%

k-NN 72.43% 2.72% 64.6% 80.2%

NB 59.23% 2.52% 50.9% 67.1%

True negative 
rate

SVM 92.95% 0.84% 90.4% 95.6%

k-NN 92.86% 0.88% 90.2% 95.2%

NB 84.65% 1.19% 81.2% 88.2%

SVM, support vector machine; k-NN, k-nearest neighbour; NB, naïve Bayesian
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For each performance measure, the higher the value (%), the better the 
analytical ability of the classifier to correctly determine the metric. The 
results in Table 4 indicate that the NB method is the least successful 
classifier of accuracy, precision and true negative rate, but is the 
best metric for detection rates. The metric mean is the lowest for the 
three metrics – accuracy, precision and true negative rate – whilst the 
variability estimate (the standard deviation) is the largest for two of the 
three metrics. 

This observation is more apparent in three of the graphical illustrations 
in Figure 2. In Figure 2b, 2c and 2e, the clustering of the estimates from 

each iteration demonstrate that the NB algorithm performs poorly in 
comparison to the k-NN and SVM classifiers. A different pattern emerges 
for comparisons with the metric detection rate, where NB outperforms 
both SVM and k-NN. These graphical summaries indicate that no single 
classifier is the best for all four metrics; the evidence indicate that the 
classifiers have different abilities. In addition, the plots indicate that there 
is some overlap of results for the classifiers SVM and k-NN, implying 
that using both classifiers does not have much benefit. Arguably for data 
analytic purposes, only one of these two classifiers needs to be used in 
this domain. 
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SVM, support vector machine; kNN, k-nearest neighbour classifier; NB, naïve Bayesian

Figure 2:	 Scatter plots of classifier comparisons in terms of performance metrics.
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Table 5 summarises the ANOVA results for each metric. For all four 
metrics, the p-value is very small (<0.01), providing inferential evidence 
supporting the claim that each performance measure’s mean responses 
for the three classifiers are not equal. The Bonferroni post-hoc comparisons 
of the differences in performance measures mean responses between two 
classifiers is also provided in Table 5. Based on the  findings with p-values 
<0.01, there is sufficient evidence to believe that the mean responses per 
metric for the classifiers differ. The exception is the true negative rate mean 
responses for the classifiers SVM and k-NN (p=0.43). These findings 
indicate that at least one classifier is statistically superior to the other(s). 

Table 5:	 ANOVA and post-hoc summary results for each performance 
measure

ANOVA summary Bonferroni p-values of 
differences between means

Metric F-statistic p-value
SVM vs 

k-NN
SVM vs 

NB
k-NN vs 

NB

Accuracy 3836.7 0.000 0.000 0.000 0.000

Detection rate 2129.6 0.000 0.000 0.000 0.000

Precision 4971.3 0.000 0.000 0.000 0.000

True negative rate 11692.2 0.000 0.434 0.000 0.000

SVM, support vector machine; k-NN, k-nearest neighbour; NB, naïve Bayesian

The results in Table 6 report the practical significance of these post-
hoc tests using Cohen’s D. Of the 12 comparisons, 10 report Cohen’s 
D values exceeding 0.80, while another has a Cohen’s D of 0.79. These 
results are referred to as a large effect and lend evidence to the claim 
that they are practically significant. The sole small effect is observed 
for the true negative rate mean responses for the classifiers SVM and 
k-NN, implying that this response is both practically and statistically 
insignificant. 

Table 6:	 Practical significance for differences between means

Mean differences Metric Cohen’s D Rule of thumb

SVM vs k-NN

Detection rate 2.150 Large effect

True negative rate 0.105 Small effect

Accuracy 1.727 Large effect

Precision 0.794 Medium effect

SVM vs NB

Detection rate 1.996 Large effect

True negative rate 8.038 Large effect

Accuracy 5.306 Large effect

Precision 5.921 Large effect

k-NN vs NB

Detection rate 4.074 Large effect

True negative rate 7.824 Large effect

Accuracy 3.646 Large effect

Precision 5.028 Large effect

SVM, Zupport vector machine; k-NN, k-nearest neighbour; NB, naïve Bayesian

A graphical approach was used to identify which of the classifiers 
performed the best collectively for the four performance measures. The 
box plots in Figure 3a–d illustrate the four performance metrics for each 
classifier in relation to each other. SVM outperforms k-NN for all four 
metrics, indicating it is the better classifier of the two in this study. The 
box plots in Figure 3a–c which illustrate the metrics accuracy, precision 
and true negative rate, respectively, show that the SVM classifier is 
considerably better than the NB classifier, whilst in Figure 3d the opposite 
is observed for the detection rate metric. Not only is NB better than SVM, 

it outperforms k-NN by some margin. These observations lend support 
to the claim that, collectively, the SVM classifier is the better model for 
this data set, whilst the other two classifiers give conflicting results. 

a

c

d

b

SVM, support vector machine; KNN, k-nearest neighbour classifier; NB, naïve Bayesian

Figure 3:	 Box plots of classifier comparisons in terms of performance 
metrics
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In summary, the three classifiers were compared using four performance 
measures: accuracy, precision, detection rate and true negative rate. 
The results for these measures differ significantly as shown graphically 
and inferred using ANOVA. As the results indicate, no single classifier 
outperforms all others for every metric. Data analysts need to decide 
for themselves which performance measure is more relevant to their 
objectives. As an example, if detection rate is crucial to the study, then 
it would be useful to include the NB classifier. Alternatively, if an analyst 
needed a single classifier for these four performance measures, the SVM 
algorithm is recommended. 

Conclusion
This research introduces statistical learning techniques as a method 
to identify electricity fraud in South Africa. The methodology involved 
the use of the three classification modelling approaches which were 
assessed using a test data set. The algorithms were compared using 
four performance measures which have been applied to fraud detection 
studies in finance and electricity theft. This methodology contributes to 
the literature by demonstrating a resampling approach to compare the 
performance measures. It is important to realise that there is considerable 
variability when partitioning data into training and test sets and once-off 
results can be misleading. Adopting a simple resampling approach can 
provide more clarity on the ability of the classifier to detect electricity 
fraud. In South Africa, municipalities can improve their revenue stream 
by identifying fraudulent clients and ensuring that the lost revenue is 
recovered. This in turn will allow the municipalities to reimburse Eskom 
for the electricity consumed. Adopting this methodology for fraud 
detection will allow municipalities to target potential fraudulent customers 
and reduce the number of manpower hours that would otherwise be 
required to conduct random on-site inspections. 
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