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Soil moisture content (SMC) plays an important role in the hydrological functioning of wetlands. Remote 
sensing shows potential for the quantification and monitoring of the SMC of palustrine wetlands; however, 
this technique remains to be assessed across a wetland–terrestrial gradient in South Africa. The ability 
of the Sentinel Synthetic Aperture Radar (SAR) and optical sensors, which are freely available from the 
European Space Agency, were evaluated to predict SMC for a palustrine wetland and surrounding terrestrial 
areas in the grassland biome of South Africa. The percentage of volumetric water content (%VWC) was 
measured across the wetland and terrestrial areas of the Colbyn Wetland Nature Reserve, located in 
the City of Tshwane Metropolitan Municipality of the Gauteng Province, using a handheld SMT-100 soil 
moisture meter at a depth of 5 cm during the peak and end of the hydroperiod in 2018. The %VWC was 
regressed against the Sentinel imagery, using random forest, simple linear and support vector machine 
regression models. Random forest yielded the highest prediction accuracies in comparison to the other 
models. The results indicate that the Sentinel images have the potential to be used to predict SMC with a 
high coefficient of determination (Sentinel-1 SAR = R²>0.9; Sentinel-2 optical = R²>0.9) and a relatively 
low root mean square error (Sentinel-1 RMSE =<17%; Sentinel-2 optical = RMSE <21%). Predicted 
maps show higher ranges of SMC for wetlands (> 50%VWC; p<0.05) compared to terrestrial areas, and 
therefore SMC monitoring may benefit the inventorying of wetlands, as well as monitoring of their extent 
and ecological condition.

Significance:
•	 The freely available and space-borne Sentinel sensors show potential for the quantification of surface 

soil moisture across a wetland–terrestrial gradient.

•	 Significant differences between the surface soil moisture of palustrine wetlands and terrestrial areas, 
imply that inventorying and monitoring of the extent and hydroperiod of palustrine wetlands can 
potentially be done.

Introduction
Globally, it is estimated that more than 85% of wetlands have been transformed, primarily owing to the loss 
of natural habitat resulting from land conversion, but also as a consequence of other pressures including 
changes to the hydrological regime, water pollution and invasive species.1,2 In South Africa, the extent of natural 
and transformed wetlands is unknown3,4, although sub-national studies have shown that 58% of wetlands in 
the Umfolozi secondary catchment (in the KwaZulu-Natal Province), had already been transformed irreversibly 
already by the 1990s5. Regional and automated inventorying and monitoring of wetland extent is critical for their 
conservation and management.

Remote sensing has played an important role in the detection and monitoring of the inundated sections of wetlands, 
both internationally and in South Africa. For example, the Global Inundation Extent from Multi-Satellites (GIEMS) 
and Global Surface Water Explorer products have been generated from coarse-scale satellite imagery which reflect 
the extent of inundation of larger artificial and natural wetlands.6,7 In South Africa, the national land-cover products 
include open water classes8, and, more recently, monitoring of the monthly extent of inundation9 has improved our 
ability to characterise the hydroperiod of wetlands. Yet early estimations of the extent of wetland cover showed that 
nearly 89% of wetlands are either arid or covered with vegetation (palustrine) in nature, whereas only 11% may be 
inundated.4 The development of indices which would characterise the extent and nature of palustrine wetlands is, 
therefore, a gap and top priority for South Africa.

Surface soil moisture is an important variable of palustrine wetlands that could potentially inform on the extent, 
hydroperiod and ecological condition of wetlands.10 Wetlands are areas where the soil becomes intermittently 
(±3 months in a year or less), seasonally (3–9 months per annum) or permanently (>9 months per annum) 
saturated within 50 cm from the soil surface.11,12 Traditional in-situ methods to measure percentage volumetric 
water content (%VWC), which use the dielectric properties within the soil (for example, the gravimetric method), 
are limited in representing the spatial and temporal variations of soil moisture13,14, and are also labour intensive, 
time consuming and costly15. Regional prediction of soil moisture content (SMC) through surface hydrological 
models has been stymied by the availability of coarse-scale data sets, in the range of ~10–100  km spatial 
resolution16-19, which prohibits the prediction of SMC for the small wetland features of an arid to semi-arid country 
such as South Africa. As precipitation is highly variable across South Africa20, frequent temporal updates of SMC 
would be essential to improve the understanding of soil saturation periods for wetlands. The prediction of SMC 
using space-borne sensors offers several advantages to traditional measurements and other modelling methods, 
the most important being that these sensors are able to estimate SMC frequently at regional scale.21
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Several studies have investigated the capability of space-borne sensors 
(including both Synthetic Aperture Radar (SAR) and optical sensors) 
in estimating surface SMC (see review by Filion et al.22). Some of the 
most recent studies done using the latest available sensor technology 
managed to achieve high coefficients of determination (R2 = >0.72) and 
low root mean square errors (RMSEs <13%).23-26 In general, the active 
SAR sensors were restricted to C-band sensors, which can penetrate 
between 5 cm and 10 cm into the canopy or soil, at a spatial resolution 
ranging from 10 m to 100 m. Passive L-band SAR sensors, on the other 
hand, can penetrate to a depth of 30 cm, and have spatial resolutions 
ranging from 3 km to 35 km27; however, they are costly and not suitable 
for monitoring small wetlands. SAR sensors have the advantage over 
optical sensors in that they are not affected by cloud cover, yet scattering 
of the signal on highly textured areas and dense vegetation may reduce 
the accuracy of prediction. Optical sensors, in contrast to SAR sensors, 
cannot penetrate soil depth to estimate SMC, but infer SMC from the 
total reflectance of soil, vegetation and water across the visible/near 
infrared (VNIR: 400 nm–1200 nm) and the short-wave infrared (SWIR: 
1200 nm–2500 nm) regions of the electromagnetic spectrum.28 Unlike 
SAR sensors, detection of SMC using optical sensors is affected by cloud 
cover, cover texture and the density of vegetation.29 The incorporation of 
vegetation indices, multiple phenological periods and different incident 
angles in the SMC predictions decreased the RMSE, and in this way, 
reduced the impact of vegetation on the prediction.26,30,31 However, 
a study done by Hornacek et al.32 showed that vegetation ≤ 1 kg/m² 
had very little influence on the estimation of SMC in terrestrial systems. 
In general, critical limitations of these SAR and optical sensors for the 
estimation and monitoring of SMC are the spatial resolution of detection 
and cost. In an arid to semi-arid country such as South Africa, wetlands 
are small in extent, and palustrine wetlands often are composed of a 
mosaic of soil and vegetation cover. SMC therefore offers the advantage 
of a single variable to monitor across the landscape to inform wetland 
extent, hydroperiod and ecological condition. 

The Sentinel SAR and optical sensors were launched between 2014 
and 2017 by the European Space Agency (ESA) and consist of twin 
satellites each: Sentinel SAR Sentinel-1A and Sentinel-1B (S1A, S1B) 
and optical Sentinel-2A and Sentinel-2B (S2A, S2B). Images from these 
sensors were made freely available to the public and consequently 
offered several new opportunities for testing the capabilities of space-
borne sensors in the quantification and monitoring of features on earth, 
including SMC of palustrine wetlands. These operational space-borne 

sensors hold promise for predicting SMC at a regional scale for palustrine 
wetlands in South Africa, but these sensors are yet to be assessed for 
their capabilities in the temperate regions of the southern hemisphere. 
In addition, none of the studies assessed SMC across a terrestrial–
wetland gradient, and whether thresholds can be selected for determining 
the maximum extent of a wetland. Average %VWC values measured in 
terrestrial systems abroad ranged from 24% to 45%, while in-situ SMC 
measured in wetlands was generally approximately above 50%.26,31,33 

The aim of this study was therefore to determine whether the Sentinel-1 
and Sentinel-2 sensors have potential to be used in estimating SMC 
across a gradient of palustrine wetlands to terrestrial areas in the 
grassland biome of South Africa. The grassland biome extends to 
approximately a third of the land mass of South Africa34, hosts a number 
of palustrine wetlands, and is one of the biomes most threatened by 
multiple pressures such as land conversion to urban areas and mining35. 
Our objectives were to (1) assess the capability of the SAR and optical 
Sentinel sensors in estimating SMC and (2) determine whether there 
are significant differences between SMC values between terrestrial areas 
and the wetlands, to inform a proposed threshold of wetland extent. We 
hope the outcome will contribute to South Africa’s National Wetland 
Monitoring Programme.36

Methods
Study area
The study area (approximately 70 ha) was situated in the Colbyn Wetland 
Nature Reserve (CWNR), located in the City of Tshwane Metropolitan 
Municipality of the Gauteng Province, South Africa (25°44’21.67”S; 
28°15’15.35”E) (Figure  1). The study area falls within the grassland 
biome and experiences a temperate climate with the rainfall season 
between September and March and the dry season between April and 
August. This ecoregion experiences an average summer rainfall of 
between 650 mm and 750 mm per annum and an evapotranspiration of 
524 mm annually.37

The Hartbeesspruit River drains the catchment, flowing in a northeasterly 
direction up to a dolerite dyke. The dolerite dyke forms a barrier on the 
northern side of the study area, and even though it has been breached 
by the river, water backs up southwest of the dyke, resulting in the 
formation of a channelled valley-bottom wetland. The adjacent hillside 
slopes contribute seepage towards the wetland, and groundwater also 
contributes interflow towards the channel.38 Most of the wetland remains 

Figure 1:	 (a) The location of the study area, the Colbyn Wetland Nature Reserve, within the Gauteng Province of South Africa. (b) A channelled valley-bottom 
wetland forms where the Hartbeesspruit (River) backs up southwest of a dolerite dyke. The locations of sample plots in the wetland and terrestrial 
areas are indicated.
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permanently saturated throughout the year, and peat has been found in 
the centre part of the wetland near the channel (extent estimated at 
4.68 ha).39 The CWNR is considered a palustrine wetland, with the full 
cover of grasses and sedges dominating in the temporary saturated 
zones of the wetland (e.g. cotton wool grass or Imperata cylindrica) 
and reeds (Phragmites australis), bulrush (Typha capensis) and the 
lesser pond sedge (Carex acutiformis) in the permanently saturated 
zones.40 Only the river channel has open water partly visible on satellite 
imagery, lined by exotic tree species, such as the weeping willow (Salix 
babylonica) and poplars (Populus × canescense), with the latter also 
found in a part of the permanently saturated zone of the wetland.

The CWNR is exposed to a number of pressures and impacts. Drainage 
has been disrupted by numerous roads, resulting in high energy run-
off leading to erosion of the wetland.41 Weirs have been built along the 
channel to alleviate the effects of erosion in order to prevent further 
degradation of the wetland.42 The Koedoespoort Railway line crosses 
through the CWNR, causing soil compaction which results in an increase 
in soil moisture saturation in parts of the study area.

Data collection
Image acquisition and pre-processing

Sentinel-1 SAR data acquisition and pre-processing
The S1A and S1B SAR C-band images were downloaded as Ground Range 
Detected (GRD) data (10x10 m spatial resolution) from the Copernicus 
website (https://scihub.copernicus.eu/dhus/#/home) (Table 1). The data 
were acquired in Interferometric Wide (IW) for both the vertical-transmit, 
vertical-receive (VV) and vertical-transmit, horizontal-receive (VH) 
polarisation modes. S1A and S1B GRD data were pre-processed using 
ESA’s Sentinel Application Platform (SNAP) software version 6.0 (2018) for 
radiometric calibration, multi-looking and terrain correction. Multi-looking 
was applied to each Sentinel-1 image (applying 2 and 2 multi-looking 
factors for range and azimuth, respectively) to reduce the speckle present 
in the images which subsequently converts the 10-m spatial resolution 
image to a 20-m spatial resolution image. Radiometric calibration of the 

SAR images converts the data from a digital number format to backscatter 
in sigma naught or sigma dB. Backscatter signal errors associated with 
terrain, orientation and geo-referencing of the imagery were corrected with 
the Range Doppler Terrain Correction using the Shuttle Radar Topography 
Mission 3 arc-seconds 30-m digital elevation model.43

Sentinel-2 data acquisition and pre-processing
Sentinel-2 optical images (S2A and S2B), processed to Level 1C, were 
acquired as close as possible to the SAR images, but avoiding imagery 
with >20% cloud coverage (Table 1). The images were downloaded from 
the United States Geological Survey (USGS) Earth Explorer website44 as 
10 individual spectral bands (Table 2). Bands 2, 3, 4 and 8 are provided 
by ESA at a 10-m spatial resolution while bands 5, 6, 7, 8a, 11 and 12 
are at 20-m spatial resolution. Bands with a 60-m spatial resolution 
(bands 1, 9 and 10) are mainly used in atmospheric correction and cirrus-
cloud screening and were not required for estimating the percentage 
SMC (%SMC). Three procedures were necessary for pre-processing the 
Sentinel-2 satellite images: (1) atmospheric correction; (2) resampling the 
20-m multispectral images to 10 m using the Sen2Cor algorithm using 
the default settings in SNAP; and (3) sub-setting to extract the study area. 

In-situ soil moisture collection
Prior to sampling, several field visits were made to plan sampling positions 
in the wetland and terrestrial areas. The extent of the wetland was guided 
by the National Wetlands Map 54, and identified through characterising 
the nature of the soil, extracted from the ground using a soil auger, 
as well as vegetation species as indicator plants. Subsequent to this 
first scoping field visit, the boundaries of the channelled valley-bottom 
wetland were adjusted to match field observations of terrestrial and 
wetland areas, resulting in an extent of 28.7 ha (Figure 1). The sampling 
period was selected to coincide with the peak hydroperiod, which would 
help to detect the maximum level and extent of soil moisture in the 
wetland for wetland inventorying. A stratified random sampling method 
was chosen to collect in-situ, %VWC measurements in the wetland 
and terrestrial areas. Stratified random sampling ensured that the point 
sample measurements were well distributed in order to represent the 
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Table 1:	 Acquisition dates and times of the Sentinel-1A/1B (S1A, S1B) and Sentinel-2A/2B (S2A, S2B) images as well as the dates of in-situ observations 

Sensor Scene ID no.
Date 

(2018)
Time of overpass of sensor  

(GMT+ 2 h)
Hydroperiod

S1A S1A_IW_GRDH_1SDV_20180326T164655_20180326T164720_021188_0246E 26 March 18:44 Peak

S1B S1B_IW_GRDH_1SDV_20180328T033428_20180328T033453_010226_012958_A3E7 28 March 05:33 Peak

S2A L1C_T35JPM_A014432_20180328T081650 28 March 09:45 Peak

S2B L1C_T35JPM_A006024_20180502T081534 02 May 09:45 End

Table 2:	 Spectral bands and associated wavelength ranges of the optical Sentinel-2A and 2B images (adapted from the European Space Agency Sentinel 
online, 2019)

Spatial resolution 
(m)

Band number

S2A S2B

Use Central wavelength 
(nm)

Bandwidth 
(nm)

Central wavelength 
(nm)

Bandwidth 
(nm)

10

2 442.7 21 442.2 21 Aerosol correction, land measurement

3 492.4 66 492.1 66 Land measurement

4 559.8 36 559.0 36 Land measurement

8 664.6 31 664.9 31 Land measurement, water vapour correction

20

5 704.1 15 703.8 16 Land measurement

6 740.5 15 739.1 15 Land measurement

7 782.8 20 779.7 20 Land measurement

8a 832.8 106 832.9 106 Land measurement, water vapour

11 864.7 21 864.0 22 Land measurement

12 945.1 20 943.2 21

60

1 1373.5 31 1376.9 30 Aerosol correction

9 1613.7 91 1610.4 94 Water vapour correction

10 2202.4 175 2185.7 185 Cirrus detection
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wetland and terrestrial sampling areas. Available Sentinel images were 
downloaded and used to determine suitable positions for the sampling 
plots which were positioned to fit both the Sentinel SAR and optical image 
pixels. A sampling plot the size of 10 m x 10 m was positioned within a 
20 m x 20 m pixel of the Sentinel-1 and Sentinel-2 image pixels. A total 
of 40 sampling plots was planned for the field survey, with 20 located in 
the wetland area and 20 located in the terrestrial area (Figure 1). For each 
sample plot, five replicate measurements of %VWC were recorded in 
order to capture the variation of the observed %SMC within the top layer 
of the soil surface. This yielded a total of 200 readings for the terrestrial 
and wetland areas during each sampling campaign. 

Near-surface volumetric SMC was acquired using a handheld SMT-100 
soil moisture and temperature probe.45 The probe measures the %VWC 
at a depth of 5 cm. The centre and corners of each sample plot were 
mapped in ArcGIS version 10.546 and then uploaded to several e-Trex 30 
Global Positioning System (GPS) devices.47 The GPS devices were then 
used to navigate to the same location for successive sampling campaigns. 
Previous studies recommended that ground measurements should be 
made within a 2-h window period around the sensor overpass time so as to 
minimise diurnal variation in SMC and vegetation on radar backscatter.48,49 
Therefore, three probes were used by three teams to record the %VWC 
within a 2-h time period around the satellite overpass, which included the 
hour before and after the time of overpass of each Sentinel sensor. 

To determine the impact of vegetation on the regression, the vegetation 
height in various zones was randomly measured and recorded during the 
field campaigns. In general, the density and height of the vegetation in 
both zones varied little for the duration of %VWC data collection between 
March and May of 2018. Regardless, sample plots were planned at least 
2 m away from macrophytes and trees where the height of the vegetation 
was >2 m high. In general, the canopy height in sample plots of similar 
grassland palustrine wetland sites (Chrissiesmeer, Mpumalanga Province) 
was 1.5–2 m, with an estimated biomass ≤850 g/m².50 The Normalised 
Difference Vegetation Index (NDVI)51,52 is often used to compensate for 
the influence of vegetation in estimating SMC24,49. However, according 
to Hornacek et al.32, vegetation and texture have very little impact on 
the %SMC modelling if grass vegetation is ≤1 kg/m2. Consequently, no 
adjustments were made for vegetation in this paper, because the above-
ground biomass and sedges in the study area are likely <850 g/m2. 

Data analysis
In order to assess the Sentinel sensors’ capability to estimate the SMC, 
backscatter from S1A and S1B and reflectance values from S2A and 
S2B were extracted from the respective images and regressed against 
the average of the five in-situ %VWC measurements taken for each plot. 
The centre point recorded for each sample plot in shapefile format was 
used to extract backscatter values for VV, VH polarisation modes as well as 
VV+VH as a modelling scenario, in ArcMap 10.5.46 Similarly, the spectral 
reflectance values of the optical sensors were extracted for all the bands, 
excluding bands 1, 9 and 10 (60-m resolution bands) for the same points.

The Sentinel-1 backscatter values and Sentinel-2 reflectance band values 
were regressed against the %VWC values (in-situ measurements) using 
both a parametric (the simple linear regression model or SLR) and two 
non-parametric (support vector machine – SVM and random forest – RF) 
algorithms in the Waikato Environment for Knowledge Analysis (Weka) 
software version 3.8.53 These regression models are commonly used 
in the remote sensing of environmental variables and the capabilities 
of these models were compared in this study (see review by Gangat26). 
In principal, parametric models assume normal distribution of the data, 
and hence they depend on mean and standard deviation statistics. These 
models are less complex in terms of tuning and require a fixed number 
of input variables.54 Non-parametric models do not assume normal 
distribution and, as spectral data are often not normally distributed, 
non-parametric methods have been found to outperform parametric 
methods in remote sensing classification and prediction. A data split was 
used with 30% data for the training data set and 70% for the validation 
data set to test the best model for regressing the observed %VWC to 
the estimated %SMC. Individual polarisations and bands as well as a 
combination of the polarisations and all bands were evaluated for each 

sensor in predicting %SMC. The best model to predict %SMC from the 
radar and optical images was selected where the highest coefficient of 
determination (R²) and lowest RMSE was attained. In order to estimate 
the %SMC, backscatter from S1B and reflectance values from optical 
S2B were extracted from the respective images. A Shapiro–Wilk test was 
used to test the differences between the wetland and terrestrial areas, 
for both the in-situ %VWC and predicted %SMC, to assess whether 
thresholding would be possible for wetland mapping. A p<0.05 was 
used to identify significant differences.

Results
Ability of Sentinel-1 and Sentinel-2 to estimate soil 
moisture content
Of the various modelling scenarios, the Sentinel images were capable of 
predicting the %SMC with the majority of coefficients of determination 
(R2)>0.7 and RMSEs<21% (Table 3). Of the four sensors which used 
RF, S1B produced a high R2 of 0.92–0.94 and the lowest RMSE of 10%. 
S2B achieved the second-highest results with an R2 of 0.92–0.94 and 
RMSE of 12–14%. S2A produced slightly better results (R =0.70–0.86; 
RMSE=13–20%) than S1A, which resulted in the lowest R2 of 0.58–0.72 
and highest error at RMSE=19–24%. 

Table 3:	 Comparison of the different modelling approaches and 
validation models, using coefficient of determination (R²) 
and root mean square error (RMSE) between the percentage 
volumetric water content (%VWC) and predicted percentage of 
soil moisture content (%SMC), across the four Sentinel sensors 
evaluated using simple linear regression (SLR), support vector 
machine (SVM) and random forest (RF) modelling algorithms 

SLR SVM RF

R2 RMSE R2 RMSE R2 RMSE

S1A VV 0.01 40 0.01 50 0.58 24

VH 0.10 34 0.10 35 0.72 19

VV+VH 0.01 40 0.03 48 0.69 23

S1B VV 0.05 39 0.05 32 0.92 10

VH 0.12 36 0.12 37 0.94 10

VV+VH 0.16 34 0.16 36 0.94 10

S2A 2-Blue 0.09 34 0.30 37 0.82 13

3-Green 0.25 32 0.50 33 0.86 18

4-Red 0.28 31 0.53 32 0.86 18

5-VRE 0.23 32 0.48 33 0.86 18

6-VRE 0.1 37 0.14 41 0.72 19

7-VRE 0.25 37 0.25 41 0.7 19

8-NIR 0.7 35 0.7 38 0.74 19

11-SWIR 0.11 35 0.11 39 0.72 20

12-SWIR 0.45 27 0.45 27 0.74 19

All bands 0.53 25 0.6 25 0.75 19

S2B 2-Blue 0.41 29 0.45 30 0.94 12

3-Green 0.40 29 0.40 29 0.94 13

4-Red 0.34 31 0.34 30 0.94 12

5-VRE 0.30 31 0.30 31 0.92 13

6-VRE 0.25 32 0.25 33 0.92 13

7-VRE 0.18 34 0.18 34 0.92 14

8-NIR 0.09 36 0.09 36 0.94 14

11-SWIR 0.36 30 0.36 31 0.92 14

12-SWIR 0.42 28 0.42 29 0.94 13

All bands 0.36 30 0.45 30 0.94 12

S1A, Sentinel-1A; S1B, Sentinel-1B; S2A, Sentinel-2A; S2B, Sentinel-2B; V, vertical-
receive vertical-transmit; VH, vertical-receive horizontal-transmit; VRE, vegetation red 
edge; SWIR, short-wave infrared
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Of the three polarisation modes (VV, VH and VH+VV) associated with the 
two Sentinel-1 (SAR) sensors, the VH polarisation mode and the VH+VV 
modelling scenario yielded higher accuracies (R²>0.7) and lower errors 
(RMSE<19%) than the VV polarisation (Table 3). S1B showed the 
highest coefficient of determination (R²>0.9) when the VH polarisation 
and VH+VV modelling scenario were used, with an RMSE of 10% in 
both instances. The results for S1A were slightly lower at R2=0.72, with 
a slightly higher RMSE of 19% for VH and 23% for VH+VV. The single VV 
polarisation showed the lowest coefficient of determination and highest 
error (R2=>0.58; RMSE = >24%) for both of the Sentinel-1 sensors 
where the RF algorithm was used. The VH polarisation mode, however, 
contributed more to the accuracies of the combined VH+VV modelling 
scenario inputs than the single polarisation (VV) mode.

A combination of all the bands for the optical sensors S2A and S2B, 
in general, resulted in high accuracies (R²>0.7 and RMSE<20%) 
when the RF algorithm was used, whereas the SLR and SVM showed 
an R²<0.6 and RMSE were 30–50% (Table 3). Some exceptions are 
evident where the use of the blue, green, red and vegetation red edge 
(VRE) bands produced comparable results to the combined bands, most 
noticeably when the RF algorithm was used (R²=0.7 for S2A, or even 
higher for S2B (R²>0.9). Five of the S2B individual bands resulted in the 
highest coefficients of determination in predicting %SMC (R2=>0.94; 
RMSE=13%), namely: blue (band 2:496–492  nm), green (band 3: 
560–559 nm), red (band 4: 664–665 nm), NIR (band 8: 833–835 nm) 
and SWIR (band 12: 2185–2204 nm). 

When comparing the regression model scenarios, the RF algorithm 
outperformed the SLR and SVM. RF achieved ranges of the coefficients 
of determination from R²=0.58 to R²=0.94 and RMSE values between 
10% and 24% (Table 3). In contrast, the non-parametric SVM had lower 
accuracies ranging from R²=0.01 to R²=0.7 and RMSE values between 
25% and 50%. The parametric SLR algorithm showed similar ranges of 
coefficients of determination to that of the non-parametric SVM algorithm 
(from R² = 0.01 to R² = 0.7) and RMSE values ranging from 25% to 
40%. Consequently, the RF algorithm was applied to the S1B SAR, using 
only VH polarisation which contributed most to the backscatter values, 
and all the bands from the S2B image, to predict %SMC for the CWNR.

Comparison of observed %VWC and predicted %SMC in 
wetland and terrestrial areas
In-situ observed %VWC ranged from 16% to 100% in the wetland areas 
and from 1% to 37% for the terrestrial area (Table 4). In comparison, 
the S1B predicted %SMC ranged from 30% to 100% for wetlands and 
11% to 39% for terrestrial areas, and the S2B predicted %SMC ranged 
from 4% to 78% in the wetlands and 4% to 57% in the terrestrial areas. 
The mean soil moisture values for in-situ observed %VWC in the wetlands 
and terrestrial areas were higher on 28 March 2018 (mean±standard 
deviation  =  91%±21 and 20%±8, respectively) compared to those 

measured a month later on 2 May 2018 (mean±standard deviation = 
74%±27 and 6%±3, respectively). Similar trends were visible in the 
predicted %SMC mean values for both the wetland and terrestrial areas. 
In contrast, the percentage of coefficient of variance (%COV) showed 
an increase over the month (from 28 March 2018 to 2 May 2018), for 
both the in-situ %VWC and %SMC predicted from both sensors, within 
the wetland and terrestrial areas. In general, the %COV was much lower 
in the terrestrial area for both dates, considering the %VWC and %SMC, 
compared to the wetland area (Figure 2). 

Table 4:	 Descriptive statistics for in-situ observed percentage of 
volumetric water content (%VWC) and predicted percentage of 
soil moisture content (%SMC) at the time of Sentinel sensors 
overpass on the 28 March 2018 for Sentinel-1B (S1B) and on 
2 May 2018 for Sentinel-2B (S2B) 

 

S1B: 28 March 2018 S2B: 2 May 2018

Observed 
%VWC

Predicted 
%SMC

Observed 
%VWC

Predicted 
%SMC

Wetland areas

Minimum 16.2 30.1 29.2 3.9

Maximum 100.0 100.0 100.0 77.6

Mean 90.7 80.7 74.8 35.7

Median 100.0 92.7 88.8 39.0

s.d. 20.8 21.4 27.3 23.3

%COV 23.0 26.5 36.4 65.3

 

Terrestrial 
areas

Minimum 4.5 11.4 1.3 3.9

Maximum 36.9 39.4 16.9 56.9

Mean 20.3 23.4 5.9 16.8

Median 20.6 21.8 5.5 13.7

s.d. 8.0 7.4 3.0 13.2

%COV 39.3 31.8 50.8 78.4

Terrestrial and 
wetland areas

Minimum 4.5 11.4 1.3 3.9

Maximum 100.0 100.0 100.0 77.6

Mean 57.4 52.2 42.7 29.4

Median 37.9 35.5 36.3 21.5

s.d. 38.7 32.9 39.9 22.4

%COV 67.5 63.0 93.3 76.0

s.d., standard deviation; %COV, coefficient of variation

Soil moisture values, whether in-situ %VWC or predicted %SMC, were 
significantly different between the wetland and terrestrial areas for both 
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a b

Figure 2:	 Percentage volumetric water content (%VWC) and predicted percentage of soil moisture content (%SMC) values between terrestrial and wetland 
areas for (a) Sentinel-1B on 28 March 2018 and (b) Sentinel-2B on 2 May 2018.
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dates (Table 5). The overlap in the minimum %VWC and %SMC with 
the maximum %VWC and %SMC (Table 4) showed that there is still 
confusion in the soil moisture values between the wetland and terrestrial 
areas, which makes it difficult to identify a certain threshold for wetland 
mapping. An average threshold of 50%VWC and/or 50%SMC was 
therefore used to distinguish wetland extent from the terrestrial areas.

Table 5:	 Differences of significance (p-value resulting from Shapiro–
Wilk’s test) between the wetland and terrestrial areas for in-situ 
percentage volumetric water content (%VWC) and the predicted 
percentage soil moisture content (%SMC) resulting from the 
Sentinel-1B (S1B) and -2B (S2B) predictions

Date
In-situ (observed) 

measurements
Sensor

Predicted soil 
moisture content

28 March 2018 0.0000000000000023 S1B 0.00000000000000022

2 May 2018 0.0000000000000024 S2B 0.00000000000000025

Predicted soil moisture maps for the study area
The predicted %SMC maps from the S1B and S2B sensors show a 
variation in the extent of soil saturation (Figure 3a and 3b). Although 
differences are visible between the S1B and S2B predictions on the 
edges of the study area, both maps show a higher level of soil saturation 
in the centre of the channelled valley-bottom wetland, southeast of the 
Hartbeesspruit River’s channel. These areas read nearly 100% of %VWC 
during the sampling for both dates.

Using the 50% threshold, nearly 47% (32.7 ha) of the extent of the study 
area could be wetland from the S1B prediction (Figure 3a), whereas 
approximately 23% (15.7 ha) would be predicted as wetland when using 
the S2B %SMC map (Figure 3b). 

The standard error graphs illustrating the observed in-situ %VWC 
against the predicted %SMC, represent the level of overestimation and 
underestimation of the model (Figure 4a and 4b). The results displayed 
show a coefficient of determination for S1B of R²=0.91 and for S2B 
of R2=0.86. Both S1B and S2B showed that observed %VWC values 
of under 50% are expected to be underpredicted, whereas above this 
threshold, predicted %SMC is overestimated, in each case by 16% and 
21%, respectively (Figure 4). 

Discussion
This study showed that the freely available Sentinel SAR and optical 
sensor data have potential for estimating soil moisture in palustrine 
wetlands. These sensors were used to predict SMC for a palustrine 
wetland in the grassland biome of South Africa with a RF algorithm 
resulting in a high coefficient of determination (R2=>0.7) and a low 
RMSE= <24% using various modelling scenarios. The results are 
comparable to those of other studies done within wetland and terrestrial 
areas in temperate climates of Poland, Germany and Italy.23-26 Further 
work is required to test the capabilities of these Sentinel sensors across 
other palustrine wetlands in South Africa, to assess the potential for 
upscaling the sensors for wetland inventorying and monitoring. 

Soil moisture ranges showed significant differences between the wetland 
and terrestrial areas. Although the wetland–terrestrial gradient and a 
threshold for wetland mapping have not been explored in other studies, 

a b

1
2

Figure 3:	 Predicted percentage soil moisture content (%SMC) map showing the variation in soil moisture derived from (a) Sentinel-1B for 28 March 2018 
and (b) Sentinel-2B for 2 May 2018 sampling campaigns. The numbers 1 and 2 in Figure 3b refer to points of interest mentioned in the Discussion.

a b

Figure 4:	 Standard error regression graphs displaying how well (a) Sentinel-1B and (b) Sentinel-2B captured the variability of the soil moisture content 
across the study area, using the random forest regression model. The solid line is the predictive model and the dotted line is the 1:1 line.

	 Estimating soil moisture from sensors for a palustrine wetland
	 Page 6 of 9

https://doi.org/10.17159/sajs.2020/6535


7 Volume 116| Number 7/8 
July/August 2020

Research Article
https://doi.org/10.17159/sajs.2020/6535

their measured SMC values were compared to this study to assess such 
a threshold. In Germany, the %VWC was 30–99.1%VWC with a mean of 
50%VWC over a floodplain with a grass canopy of up to 2 m in height, 
measured at the end of the growth period.26 In Italy, the mean %VWC 
in a dense terrestrial grassland area was 45%VWC at the end of the 
growth period.31 A study conducted on the coastal plains of Washington 
District Capital (USA) attained an average of 59%VWC for their wetland 
areas and 24%VWC in the terrestrial areas.33 Our findings show mean 
soil moisture levels for the in-situ measured data in the wetland of 
>75%VWC – significantly higher (p<0.05) compared to the mean 
%VWC measured in the terrestrial area (20% and 6% on the 28 March 
and 2 May 2018, respectively). An overlap in %VWC and %SMC values 
still makes it difficult to identify a threshold for mapped wetlands with 
high confidence. Consequently, we propose an interim 50% threshold 
for measured %VWC or predicted %SMC to distinguish the extent of the 
wetland in the CWNR for these two dates. Continuous assessment of the 
different soil moisture ranges over multiple time periods and hydrological 
regimes would be critical to confirm this proposed threshold and would 
provide insight into determining the maximum extent of wetlands. 

The site showed a variation in the magnitude and areal extent of soil 
moisture between 28 March 2018 and 2 May 2018. The magnitude of 
the mean observed %VWC decreased from 28 March to 2 May by 6%. 
The predicted %SMC also showed a decline – by 45% – which may be 
explained by differences in prediction of %SMC by the radar and optical 
sensors. Regardless, it appears as if the sensors would have the potential 
to detect the variation in the degree of soil saturation. The predicted 
%SMC maps of 28 March 2018 (using S1B) and 2 May 2018 (using 
S2B) showed differences in the areal extent of soil saturation across 
the wetland, which could be attributed to a variation in rainfall and the 
subsequent infiltration and interflow of water into the soil. If a 50%SMC 
threshold is used to extract the areal extent of the wetland, the extent of 
the wetland covered 47% or 32.7 ha on 28 March and 23% or 15.7 ha 
on 2 May. Interestingly, the sampling campaign on 28 March 2018 took 
place shortly after an intense rainfall storm (22 March 2018) whereas the 
sampling campaign on 2 May 2018 took place approximately 2 weeks 
after a less intense rainfall period (Figure 5). This could possibly explain 
the higher mean values of 91%VWC and 23%COV recorded directly after 
the rain spell within the top layer of the soil, which subsequently may 
have infiltrated to deeper soils a month later, resulting in a lower mean of 
75%VWC and 6%COV. Theoretically, the continuous rainfall events over 

summer (rainfall started approximately mid-February of 2018)37 would 
lead to progressively accumulated water in the main part of the channelled 
valley-bottom wetland through surface run-off and groundwater 
accumulation. The accumulation of water in soil of the palustrine wetland 
would have resulted in an increase in the dielectric constant, resulting in 
higher backscatter and reflectance values. These results are evident from 
the comparison between the predicted SMC maps from S1B and S2B, 
which suggests that changes in soil saturation could potentially be used to 
detect soil saturation across a wetland’s hydroperiod. We recommend that 
both sensors be used to test whether a more refined threshold for wetland 
mapping can be derived from time-series data.

In modelling SMC with the use of satellite imagery, our methods 
show that the RF non-parametric algorithm outperformed the SLR 
and SVM algorithms. This finding is in line with other studies in which 
non-parametric algorithms outperformed parametric algorithms.54,55 
Our study showed a minor difference in model performance for the radar 
data when using either VV, VH or VV+VH polarisation (R²>0.92 and 
RMSE=10%). This differs from the findings of Dabrowska-Zielinska et 
al.24, who indicated that the SAR VH outperforms VV and dual polarisation. 
For the optical data, the use of all bands achieved the highest R2 (0.94) 
and the lowest RMSE (12%), compared to the use of individual bands. 
The use of bands across the visible, NIR and SWIR all contributed to the 
optimisation of the prediction of %SMC in the RF algorithm.

When comparing the parametric and non-parametric predictive models 
(SLR, RF and SVM), the comparative evaluation results show that RF 
outperformed the other parametric SLR and non-parametric SVM. RF 
resulted in the highest coefficients of determination (R² 0.7–0.94) when 
either VV+VH or all optical bands were used. In contrast, the SLR and 
SVM show a poorer relationship between %VWC and %SMC when all 
bands were used (R² ranged from 0.4–0.6), while for the radar, SLR 
showed no relation (R²<0.2). In general, non-parametric models are 
more suitable for reflectance and backscatter data, because these are 
often not normally distributed.50,55 In addition, the non-parametric models 
are able to predict values using data sets with fewer observations over 
large regions. Although RF and SVM often show comparative results in 
remote sensing prediction of continuous variables, SVM requires more 
customisation to obtain the optimum model performance, whereas RF is 
easier to use and does not require reiterative testing.

a

b

Figure 5:	 Total amount of daily precipitation (mm) for the month37 in which the sampling was done. Graph (a) shows a rainfall peak shortly before the 
acquisition for Sentinel-1B on the 28 March 2018 (indicated by the dotted vertical line) and graph (b) shows the Sentinel-2B acquisition on 
2 May 2018 (indicated by the dotted vertical line). Precipitation scale ranges on the y-axes are different to account for differences in the maximum 
precipitation of the two sample dates.
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Despite the concern of the influence of vegetation on backscatter or 
reflectance data, our results show that it was likely not a significant 
influence on the prediction of %SMC in the case of CWNR. Above-
ground biomass values for palustrine wetlands in the grassland biome 
of South Africa are estimated to be <850 g/m2(50) and <1 kg/m²(32), and 
are considered to have very little influence on the estimation of SMC. 
The inclusion of NDVI in the S2B regression showed a minor increase 
in model performance (R²=0.9 and RMSE of 0.2; results not shown). 
Further work is required to assess whether vegetation and texture indices 
improve the estimation of SMC in other sites and climatic regions. 

Regional monitoring of soil moisture would contribute greatly to 
South Africa’s National Wetland Monitoring Programme, particularly 
because it is a common variable across palustrine wetland type, whereas 
vegetation communities would vary. To date, the SAR sensors available for 
the estimation of SMC are limited to C-band sensors, which can penetrate 
only to a depth of 5  cm. L-band sensors, on the other hand, have the 
advantage of deeper penetration through canopy cover or into bare soils. 
The Advanced Land Observing Satellite (ALOS)-2 L-band SAR sensor of the 
Japan Aerospace Exploration Agency (JAXA) has a high spatial resolution 
(10 m) and a temporal resolution of 46 days; however, these data were 
not freely available for use in monitoring at the time of this study, but the 
Japanese ministry announced in November 2019 that the ALOS archive 
would be made openly accessible. Several L-band sensors are planned 
to be launched from 2020 onwards, potentially for public use, including 
ALOS-3 from JAXA, NASA ISRO Synthetic Aperture Radar (NISAR) from 
NASA/ISRO and TanDEM-L from the German Space Agency.56 

Conclusion
This study proves that the freely available Sentinel-1 (SAR) and Sentinel-2 
(optical) sensors have potential in the estimation of the extent and degree of 
soil saturation in palustrine wetlands in the grassland biome of South Africa. 
The Sentinel-1 SAR and Sentinel-2 optical sensors were able to predict 
%SMC with a high coefficient of determination (R²>0.9) and low RMSE 
(<21%) along a wetland–terrestrial gradient in the grassland biome of 
the Gauteng Province of South Africa. The non-parametric RF algorithm 
outperformed the parametric SLR and non-parametric SVM algorithms in 
predicting %SMC for the CWNR during the peak of the hydroperiod in March 
and May 2018. Significant differences between the surface soil moisture 
of the palustrine wetland and the surrounding terrestrial areas imply that 
inventorying and monitoring of the extent and hydroperiod of palustrine 
wetlands can potentially be done. An SMC threshold of ≥50% was used as 
a potential threshold to determine the extent of the wetland area; however, 
owing to uncertainties resulting from the overlap in the measured %VWC, 
further work would be required to confirm whether this threshold is relevant 
across the hydroperiod and other grassland sites. The predictions for the 
two months (March and May) showed a potential accumulation of soil 
saturation over the period, which may have resulted from interflow and 
groundwater accumulation. Although other studies suggest that vegetation 
has an influence on the prediction of soil moisture over an area, the 
incorporation of the NDVI in predicting %SMC from the optical Sentinel-2B 
image, showed only a minor improvement in the prediction. The prediction 
of SMC in the grassland biome of South Africa can play a significant role in 
improving the representation of the natural variation in soil saturation values 
of palustrine wetlands and enables the detection of outlier seasons or years 
associated with the impacts of global and changing climate.
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