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Mapping chlorophyll-a (chl-a) is crucial for water quality management in turbid and productive case 
II water bodies, which are largely influenced by suspended sediment and phytoplankton. Recent 
developments in remote sensing technology offer new avenues for water quality assessment and chl-a 
detection for inland water bodies. In this study, the red to near-infrared (NIR-red) bands were tested for 
the Vaal Dam in South Africa to classify chl-a concentrations using Landsat 8 Operational Land Imager 
(OLI) data for 2014–2016 by means of stepwise logistic regression (SLR). The moderate-resolution 
imaging spectroradiometer (MODIS) data were also used for validating chl-a concentration classes. The 
chl-a concentrations were classified into low and high concentrations. The SLR applied on 2014 images 
yielded an overall accuracy of 80% and kappa coefficient (κ) of 0.74 on April 2014 data, while an overall 
accuracy of 65% and κ=0.30 were obtained for the May 2015 Landsat data. There was a significant 
(p<0.05) negative correlation between chl-a classes and red band in all analyses, while the NIR band 
showed a positive correlation (0.0001; p<0.89) for April 2014 data set. The 2015 image classification 
yielded an overall accuracy of 83% and κ=0.43. The difference vegetation index showed a significant 
(p<0.003) positive correlation with chl-a concentrations for May 2015 and July 2016, with chl-a ranges 
of between 2.5 µg/L and 1219 µg/L. These correlations show that a class increase in chl-a (from low 
to high) is in response to an increase in greenness within the Vaal Dam. We have demonstrated the 
applicability of Landsat 8 OLI data for inland water quality assessment.

Significance:
•	 The magnitude of the algae problem in the Vaal Dam is highlighted.

•	 Landsat 8 OLI satellite data have potential in mapping chl-a in inland water bodies.

•	 Both the red and the near infrared wavelengths were significant in mapping chl-a concentrations in the 
Vaal Dam.

•	 Satellite earth observation can be instrumental for water quality monitoring and decision-making.

Introduction
Freshwater resources are central for human sustenance and are a catalyst for economic development. However, 
freshwater resources globally are increasingly being polluted by industrial effluent, phosphorous and residual 
nitrates1 attributed to rapid industrialisation2, and the intensive use of fertilisers and pesticides in agriculture3. This 
situation is becoming more precarious in industrialised and agrarian economies with scarce surface freshwater 
resources. For many years, the subject of water quality has attracted the attention of policymakers and scientists 
across the African continent.4,5 South Africa, in particular, is currently confronted with several water quality issues. 
Eutrophication is at the centre of water quality challenges currently confronting water authorities in South Africa, and 
is a matter of public and scientific concern.6 Satellite-based remote sensing is increasingly playing a fundamental 
role in providing valuable spatial and temporal measurements of the concentration of chlorophyll-a (chl-a) in 
water bodies dominated by cyanobacteria and algal blooms globally. Many scientific studies have highlighted the 
advantages of using satellite imagery in monitoring the status of eutrophication in case II water bodies regularly.7,8 
Thus, the estimation of chl-a concentration in inland water bodies is important for effective monitoring of water 
quality for management purposes.

However, determination of light-absorbing chl-a in case II water bodies (those water bodies whose optical properties 
are determined by phytoplankton and related constituents9) is more challenging considering the optical properties 
of the water bodies. This challenge is primarily because of the presence of other biophysical constituents such as 
dissolved organic matter and suspended solids with varying abundance, concentrations and reflectance.10,11 This 
variation leads to a situation in which the chl-a concentrations do not necessarily present a readily measureable, 
homogenous surface cover across the water body. Instead, complex optical properties are realised, thereby 
increasing challenges related to chl-a detection.11 Fortunately, remote sensing technology has opened avenues 
for successful detection of chl-a concentrations in inland water bodies, through prevalence of algae12 and aquatic 
invasive vegetation13-15.

One of the most commonly used remote sensing approaches for deriving chl-a is hyperspectral sensing, which has 
proved effective for estimating chl-a in case II waters.11,16,17 However, the use of hyperspectral data and models is 
limited by its cost and high data dimensionality. In order to address this challenge, a number of optical multispectral 
sensors, such as the moderate-resolution imaging spectroradiometer (MODIS) and medium-resolution imaging 
spectrometer (MERIS) were used for estimating chl-a in inland waters.11,18,19 The application of MODIS and MERIS 
to estimate chl-a concentrations is possible mainly because of the relationship between chl-a concentrations and 
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spectral reflectance in red and near-infrared (NIR) regions.20,21 However, 
the coarse spatial resolution of MODIS and satellite discontinuity of 
MERIS have made it challenging to map chl-a to resolve small water 
bodies, particularly when mapping relies on the complementary nature 
of MODIS data by MERIS data sets. Additionally, the low signal-to-noise 
ratio of these sensors (8-bit) may not be adequate to characterise inland 
water quality.

The advancement in remote sensing technology has resulted in the launch 
of Landsat 5 Thematic Mapper (TM) and 7 Enhanced Thematic Mapper 
(ETM+) space-borne sensors with a spatial resolution of 30 m. These 
sensors comprise spectral regions similar to those of the MODIS sensor, 
in the visible to NIR region. Both Landsat 5 and 7 have demonstrated 
superior capability to both MERIS and MODIS in medium-size and small 
inland water as a result of their spatial resolution.22 They are known to be 
characterised by limited signal-to-noise ratio, four bands in the visible-
NIR, and an 8-bit quantiser.23 However, the instrumentation problems 
associated with Landsat 7 image acquisition limit the applicability of this 
sensor in detecting moving algal concentrations. For example, the Scan 
Line Corrector (SLC; an electromechanical device that compensates for 
the forward motion of Landsat 7) failed on 31 May 2003, resulting in up 
to 22% of the pixels missing in the collected image scenes.24 The recently 
launched Landsat 8 Operational Land Imager (OLI) with improved signal-
to-noise ratio and 12-bit quantisation exhibited the potential to map 
chl-a by using empirical band ratio regression models.25 This potential 
is because of its stripe-free images, as opposed to the striped images 
acquired by Landsat 7 ETM+ over the local study area. Based on the 
assumptions made by Gitelson et al.26 and Dall’Olmo and Gitelson27 
regarding the sensitivity of red and NIR bands in estimating chl-a, the 
question arose as to whether we can effectively use Landsat OLI data 
to map such chl-a concentrations in water bodies whose properties are 
significantly affected by mineral particles (i.e. case II water bodies).

Various statistical models have been used to map chl-a in both case I and 
II waters. Case I water consists of a high concentration of phytoplankton 
compared to other particles, whereas case II waters consist of high 
turbid water with an abundant occurrence of dissolved organic matter 
and suspended solids. Amongst these different algorithms is the 
linear inversion matrix28, neural network methods13,29 and regression 
models30. Perhaps one of the most commonly used methods is the 
linear regression model, which relates water/chl-a concentrations to 
spectral measurements as observed by satellites.31 There are limited 
studies that have used the logistic regression model, which is a type 
of generalised linear model, for estimation of chl-a, particularly when 
such estimations are done to categorise chl-a into discreet classes. 
Therefore, we aimed to estimate chl-a concentrations of cyanobacteria 
and algae in the Vaal Dam in South Africa using the Landsat 8 OLI data 
set. The objective of the study was to test whether single and two-band 
normalised indices, derived from sensitive bands, could aid in estimating 
chl-a concentrations in the Vaal Dam. The Vaal Dam is one of the 
largest and economically most important dams in South Africa, with its 
significance highly recognised, particularly during the dry season.32 To 
the best of our knowledge, there has never been a study in South Africa 
in which Landsat OLI data were used in modelling chl-a concentrations 
in large, semi-arid water bodies such as the Vaal Dam. Spatial data 
concerning the concentrations of chl-a in economically important dams 
of South Africa remain limited.

The Vaal Dam is a trans-provincial water body that forms a boundary 
between the Gauteng and Mpumalanga Provinces, Gauteng and 
Free State Provinces, and Free State and Mpumalanga Provinces of 
South  Africa. It is located at 26°56’49’’S and 28°14’30’’E (Figure  1). 
The dam was constructed in 1938 with a wall height of 54.2 m, which 
was elevated to 63.5 m in 1985 because of increased water capacity of 
2188 million m3/year.33 The Vaal Dam has a surface area of approximately 
321 km2 and an average depth of 22.5 m; and the Dam supplies large 
volumes of water to the people of South Africa.34 The water is mostly 
turbid, with the Dam characterised by silty bottom strata responsible 
for constant turbidity at varying degrees. Apart from the turbid nature of 
the Dam, algal blooms that affect the biophysical and chemical quality 
of the water are a growing concern35; these blooms are a common 

phenomenon along the Vaal River System. Because of its economic 
importance, there is a need to monitor algal blooms and to control 
cyanobacteria – which are the primary indicators of eutrophication levels 
in case II waters – within this reservoir. Cyanobacterial blooms have 
been a major environmental concern for many years, with well-known 
cattle deaths in the 1940s associated with cyanobacteria.36 Although 
there is sufficient public awareness of the impacts of cyanobacteria in 
South Africa, information on the spatial distribution of chl-a over time 
within the Vaal Dam is lacking, and is crucial for reservoir management.

Figure 1:	 Locality map of the study area.

Methods
Data and pre-processing
Landsat 8 OLI data were explored as a source to estimate chl-a 
concentrations of cyanobacteria and algae within the Vaal Dam. Table 1 
shows the details of images acquired for the study. One of the images 
was acquired on 22 April 2014 – the day that corresponded to one of the 
highest peaks of algal blooms in water bodies in the Vaal Dam.37 Landsat 
8 data comprise a total of 11 spectral bands in the visible to thermal 
infrared region (0.43–12.51 µm). In the visible shortwave infrared 
spectrum, Landsat 8 has a band range from coastal band (0.44 µm) to 
shortwave infrared (2.29 µm) and a ground sampling distance of 30 m. 
Each of the spectral bands in the visible shortwave infrared range was 
converted from a digital number to top-of-atmosphere reflectance value 
(0–1) by means of Equation 1:

ρλ' = ρMQcal + ρA	 Equation 1
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where ρλ is top-of-atmosphere planetary reflectance, without correction 
for solar angle; ρM is a band-specific multiplicative rescaling factor, ρA 
is the band-specific additive rescaling factor, and Qcal is the quantised 
and calibrated standard pixel values in digital numbers.38 Based on 
our objective, a total of seven (7) spectral bands were merged to form 
multispectral images with 16-bit radiometric resolution. These spectral 
bands were coastal (0.44 µm), blue (0.48 µm), green (0.56 µm), red 
(0.66 µm), near-infrared (0.87 µm), shortwave infrared1 (1.61 µm) and 
shortwave infrared2 (2.20 µm). The atmospheric correction processing 
was done on each satellite image using Quick Atmospheric Correction 
(QUAC) module in ENVI®.39 The resultant QUAC images had values from 
0 to 10 000, and were rescaled to have values of between 0 and 1 using 
Equation 2:

Imgn = Imgi x 0.0001 - 0.1	 Equation 2

where Imgn is the new reflectance image (0–1 value) and Imgi is the 
QUAC image with values scaled to 10 000. This step was necessary to 
allow for comparison of image values after the effect of atmosphere was 
removed from the images. The QUAC algorithm was chosen because of 
its accuracy in chl-a estimation for turbid waters and because it comes 
as a standard extension in the ENVI software.38,39

In order to derive the geographical extent of the Vaal Dam from satellite 
images, a simple water index algorithm was applied on individual images. 
The index is based on the low within-class variation of water pixels in blue 
(0.48 µm) and shortwave infrared (1.61 µm) bands of Landsat 8 OLI. It 
classifies water pixels as 1 and non-water pixels as 0 and has shown to 
be effective in many parts of the world.38 This processing was followed 
by subsetting an atmospherically corrected 7-band Landsat OLI imagery 
of the delineated study area. Ultimately, the pre-processing included 
pan-sharpening of the individual image with a 15-m panchromatic band 
in order to improve the ground sampling distance of the 30-m images 
using the nearest-neighbour resampling method.

Table 1:	 Specifications of the satellite data used in the study

Sensor Path/row
Ground 

sampling 
distance (m)

Date
Atmospheric 

condition

OLI 170/079 15 22 April 2014 Partly cloudy

OLI 170/079 15 27 May 2015 Clear conditions

OLI 170/79 15 16 July 2016 Clear conditions

MODIS - 250 21 April 2014 Clear conditions

MODIS - 250 26 May 2015 Clear conditions

OLI, Operational Land Imager; MODIS, moderate-resolution imaging 
spectroradiometer

Selecting regions of interest
The visual interpretation of various chl-a densities was done on pan-
sharpened Landsat 8 imagery (15 m ground sampling distance) in order 
to extract regions of interest (ROIs). The ROIs were chosen with the aid 
of the spectral reflectance curve shown in Figure 2 and the two-class 
algorithm based on the normalised difference vegetation index (NDVI) 
shown in Figure 3. The spectral profiles were pre-assessed using average 
spectra of extracted pixels from the 2016 image classes (low=17 and 
high=6) corresponding to field data collected during this period. Figure 2 
shows that average spectra of the low and high chl-a classes for both 
visual (image data set) and quantitative (field data set) selection are not 
very different from each other. Additionally, Table 2 gives a summary of the 
statistics of low and high chl-a classes derived from Landsat data and field 
data collected on the Vaal Dam. A total of 49 (n=49) ROIs was extracted 
from each image, corresponding to images acquired in 2014 to 2016. The 
ROIs were chosen to fall within low or high chl-a concentration classes.

Figure 2:	 Typical spectral profiles of high and low classes of chl-a as 
observed from Landsat OLI field data of the study area.

Figure 3:	 Normalised difference vegetation index (NDVI) classification 
scheme used in the study to separate chl-a concentrations into 
two classes.

Table 2:	 Descriptive statistics of two chl-a classes from the normalised 
difference vegetation index (NDVI) calculated using red and 
near-infrared bands of Landsat OLI data, and the NDVI derived 
from field data

Class Low (field) High (field)

Descriptive 
statistics

Minimum -0.23 (-0.64) -0.13 (-0.61)

Mean () -0.22 (-0.53) -0.04 (-0.36)

Maximum -0.14 (-0.45) 0.42 (-0.12)

Standard deviation (σ) 0.018 (0.06) 0.11 (0.21)

Field data collection
Field data were collected on 16 July 2016 from the Vaal Dam. Sampling 
was done in terms of the exact longitudes and latitudes of the sampling 
points and in-situ classification of chl-a concentration; actual algae 
samples were taken for laboratory analysis. The data were collected 
corresponding to the time of the Landsat 8 OLI overpass (at approximately 
10:00). A total of 23 samples was collected and all samples were 
analysed for chl-a concentration. Table 3 gives the details of the field 
data collected. This data set was used for validating the model used for 
predicting chl-a and was later used for producing the maps. Figure 4 
shows the scatterplot of the points collected in the field. Because the 
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minimum chl-a value (2.5 µg/L) was far less than the maximum chl-a 
value (1219 µg/L), we applied the log transformation to this skewed data 
using Logx+1 in order to force the data to conform to normality.

Figure 4:	 Scatterplot showing the distribution of chl-a samples collected 
from the Vaal Dam during the 2016 field campaign.

Table 3:	 Summary of the field data collected in July 2016 

Class Low (µg/L) High (µg/L)

Descriptive 
statistics

Minimum 2.5 49

Mean () 12.7 392

Maximum 35 1219

Std. deviation (σ) 10.3 446.8

Data analysis
Data analysis was performed on three Landsat images in R,40 QGIS version 
2.12 and ENVI version 4.7. Various vegetation indices that are sensitive 
to chl-a were derived. These indices, in addition to chl-a sensitive bands, 
were selected on the basis of their relationship with chl-a in case II water 
bodies.26 These indices were two-band indices in the red-NIR region of 
Landsat OLI. Table 4 shows the vegetation indices used in this study. 
From each image, 60% of the ROIs (n=29) was used for training the 
model, while 40% (n=20) was reserved as an independent validation 
data set. Similar ROIs were used for calibrating the model for the 2016 
image, with the field data set serving as validation. In order to estimate 
classes of chl-a using remote sensing data, a multiple step-wise logistic 
regression (SLR) was employed. The SLR is given in the form of:

exp (β
0
+β

1
X
1
+β

2
X
2
+...+β

n
 X

n
+ε)

1+exp (β
0
+β

1
X
1
+β

2
X
2
+...+β

n
 X

n
+ε)yi= 	 Equation 3

where y is the resultant chl-a concentration of an i-th class, a is the 
y-intercept, bn is the regression estimate of variable xn, and ɛ is an 
error associated with prediction which was not pre-determined but it is 
associated with the logistic regression model. In addition, the D2 (which 
is an analogy of R2) was used to compare the strength of the model fit. 
The D2 is given by:

residual deviance
null deviance

D2 = 1- 	 Equation 4

Because we were using images acquired on different dates, it was 
necessary to assess possible differences and similarities between ROIs 
collected from the 2016 image (date of field data acquisition) and those 
collected from 2014 and 2015 images. For this reason, we adopted the 
spectral discrimination index (SDI) for the 2014/2016 image pair and the 
2015/2016 image pair41,42 acquired for the same season (autumn). The 
SDI is computed from Equation 5 as:

|µ1-µ2|
SDI= σ1+σ2

	 Equation 5

where µ1 and µ2 are the mean values of chl-a pixels in time period 1 and 
2, respectively; and σ1 and σ2 are the standard deviations of the chl-a 
pixels between time 1 and 2, respectively. A higher SDI indicates that 
these two images are significantly different while a lower value indicates 
that there is a form of similarity in conditions at times 1 and 2. A rule 
of thumb is that an SDI>1 shows a satisfactory dissimilarity between 
two mean values. The preliminary SDI on extracted ROIs showed less 
varying chl-a spectra on Landsat 8 OLI images acquired in 2014–2016 
(µ2014=0.090, s.d.=0.053; µ2015=0.103, s.d.=0.083; µ2016=0.084, 
s.d.=0.037). The SDI value between 2014 and 2016 images was 0.07, 
while a value of 0.16 was obtained on images acquired in 2015 and 
2016. This information suggested that the spectral analysis could further 
be done for all three image dates as the conditions prevailing during field 
data collection did not significantly differ (SDI<0.2).

Accuracy assessment
In order to validate the reliability of the results and model used in estimating 
two main classes of chl-a concentrations, statistical comparison was 
done between the predicted chl-a and visually quantified chl-a. For a 
more robust validation of the model, the field data collected on 16 July 
2016 were used as an independent validation data set (n=23), which 
was not significantly different from the data set used for 2014 and 2015 
validation (n=20). The NDVI derived from MODIS was used against 
the predicted classes. The MODIS data were used for evaluating any 
similarities between MODIS NDVI and Landsat 8 NDVI used to classify 
chl-a preliminarily into high and low classes. The NDVI is the quantitative 
indicator of vegetation greenness and its relative density as observed 
using space-borne satellites. The NDVI values have a range from -1.0 
to +1.0, with positive values (close to +1.0) indicating healthy green 
pigment. Geographical features such as water, areas of barren rock, 
sand, and bare soil are usually characterised by values below zero (close 
to -1.0). 

The MODIS NDVI product has shown correlation with various chl-a 
classes and the ground data in Heihe River Basin, with an R2 of up to 
0.98.43 On the other hand, Gitelson et al.44 have shown that MODIS-
retrieved NDVI vs fAPARgreen showed a very close relationship with the 
fAPARgreen vs in-situ NDVI, while MODIS NDVI showed positive correlation 
with chlorophyll content45. This makes the MODIS NDVI product a good 
reference data set for chl-a studies. The reference data set was obtained 
from points generated on MODIS NDVI with 250-m pixel resolution, and 
the ROIs from Landsat 8. The MODIS NDVI products were produced 
for the dates that correspond with the Landsat 8 image acquisitions for 
2014 and 2015, as the 2016 data set could only be validated using the 
field data set. Because MODIS NDVI values are scaled from -1999 to 
7500, we converted them to standard NDVI values of between -1.0 and 
1.0 using Equation 6:

NDVIn = NDVI x 0.0001	 Equation 6

where NDVIn is the standard NDVI, and NDVI is the MODIS NDVI product. 
Classification accuracy was computed from the overall accuracy, which 
is the total number of correctly classified cases to the total number of 
cases. In addition, the accuracy was further assessed by calculating 
the kappa coefficients (κ) between classes of low chl-a concentrations 
(0) and high concentrations (1) using the field chl-a data set. The κ is 
given by:

ρobs - ρchn

1 - ρchn

κ = 	 Equation 7

where ρobs is the observed proportion of agreement and ρchn is the 
proportion expected by chance. 
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Results and discussion
The results of the SLR are shown in Table 5. The SLR model used 
to estimate classes of algae based on chl-a concentration was more 
sensitive for the April 2014 analysis than for both May 2015 and 2016 
data sets. For the April 2014 Landsat data, the SLR model yielded a higher 
D2 than for the May 2015 data (D2=76.8% and 35.01%, respectively). 
The April period in South Africa corresponds to the period when the algae 
and cyanobacteria in the Vaal Dam reach their maximum photosynthetic 
activities.37 Classification of the 2016 image yielded the second highest 
D2 of 64.37%. The equations used to derive chl-a distribution maps 
(classes) for both April 2014 and May 2015 are given by:

exp (22.7800-(0.0025 x β
4
)+(0.0001 x β

5
))

(1+exp (22.7800-(0.0025 x β
4
)+(0.0001 x β

5
)))

chl-a = 	 Equation 8

exp (6.9989+(0.0027 x β
3
))

(1+exp (6.9989+(0.0027 x β
3
)))

chl-a =
	 Equation 9

Equations 8 and 9 were applied to the 2014 and 2015 images, respectively. 
The model which comprises variables β4 (red band at 0.66  µm) and 
β5 (NIR band at 0.86 µm) as predictors was used for estimating chl-a 
concentration in the Vaal Dam. The red band (β4) was significantly 
and negatively correlated with the density of chl-a in the dam (-0.002; 
p<0.001) for the April 2014 Landsat 8 data. This relationship is as a result 
of the photochemical activity of photosystem II which is characterised 
by a reduction in the shorter wavelength red band because of increased 
chl-a concentration.46 Additionally, although not significantly, the NIR band 
(β5) was positively correlated with the density of chl-a (0.0001; p<0.89). 

The positive correlation between the chl-a and the NIR also supports the 
negative correlation between the red band and chl-a density. The increase 
in algae biomass results in an increase in the opposing trends between the 
NIR and red band correlations (Figure 3). The NIR region, which is outside 
of the PAR region, is mainly used by the algae for photomorphogenesis, 
which is light regulating changes in development, morphology, bio
chemistry, cell structure and function in response to light.47,48

For the 2016 winter image, the estimation of chl-a was derived following 
Equation 10. The pattern of this model used for predicting chl-a 
concentration showed similarity to the one used in 2015.

exp (1.090+(36.308 x β
3
))

(1+exp (1.090+(36.308 x β
3
)))

chl-a = 	 Equation 10

On the other hand, the difference vegetation index represented as 
variable β3

 was the only significant (0.0027; ρ<0.018) remote sensing 
variable for predicting chl-a in the Vaal Dam for the images acquired in 
both May 2015 and July 2016. The positive correlation between chl-a 
classes and difference vegetation index suggests that the higher the 
concentration of the healthy green algae, the greater the absorption of 
the red band (PAR), as the difference vegetation index is calculated from 
the difference between the red and NIR bands.49 It is generally known that 
remote sensing indices are better designed for mapping changes in chl-a 
than are individual spectral bands because of their ability to compensate 
for errors resulting from solar or viewing geometry.

Initial desktop validation data showed that the SLR model applied on 
Landsat OLI April 2014 data yielded an 80% overall accuracy while a 
65% overall accuracy was obtained from Landsat OLI data for May 2015. 

Table 4:	 The input remote sensing variables used for estimating chl-a

Variable 
(index)

Formulation Reference Sensitivity

β1 β1 α (Rrs (0.66) x Rrs (0.86))-1 -1 Dall’Olmo and Gitelson27 Chlorophyll-a

β2 (simple ratio) β2 α (Rrs (0.86) / Rrs (0.66))-1 -1 Jordan62 Chlorophyll-a, biomass, vegetation health

β3 (difference vegetation 
index) β3 α (Rrs (0.86) - Rrs (0.66))-1 -1 Broge and Leblanc49 Vegetation greenness, chlorophyll-a, biomass

β4 β4 α (Rrs (0.66))-1 Huete et al.63 Chlorophyll-a, vegetation greenness

β5 β5 α (Rrs (0.86))-1 Huete et al.63 
Vegetation greenness, biomass, moisture 
content, chlorophyll-a

Table 5:	 The results of the logistic regression as applied on April 2014, May 2015 and July 2016 Landsat 8 OLI images of the study area

Image date Variable Estimate Standard error Pr (> | z | ) κ D2 (%)
Overall accuracy % 
(Landsat 8/MODIS)

22 April 2014

y-intercept 22.7800 7.9400 0.0040**

0.74 76.38 80/95β4 -0.0025 0.0001 0.0003***

β5 0.0001 0.0004 0.8900 

27 May 2015
y-intercept 6.9939 3.1857 0.0281*

0.30 35.01 65/65
β3 0.0027 0.0011 0.0181*

16 July 2016
y-intercept 1.090 1.419 0.442

0.43 64.37 83/-
β3 36.308 16.628 0.029*

*p<0.05, **p<0.01, ***p<0.001
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There was substantial agreement (κ=0.74) between the validation data 
set and the predicted chl-a concentrations for the image acquired on 
22 April 2014, while a fair agreement (κ=0.30) was observed for the 
22 May 2015 image. These levels of agreement were predominantly 
affected by the sample size of the validation data set. However, the field 
data set resulted in a classification accuracy of 83% with fair agreement 
between the observed and the measured concentrations (κ=0.43).

Thematic maps
Figure 5 shows the results of the spatial characteristics of predicted chl-a 
for the April 2014 and May 2015 study periods. The chl-a concentration 
ranged from 0 (indicating low class) to 0.99 (indicating high class) in 
the lentic freshwater body corresponding to a minimum of 2.5 µg/L 
and a maximum of 1219 µg/L. On the other hand, there is correlation 
(R2=0.61) between the log-transformed chl-a measurements and the 
estimated chl-a as shown in Figure 6. The resultant maps indicate 
that higher class concentrations were predominantly found at or near 
the shores of the dam. These areas are usually shallower with higher 
temperatures than the deep waters, resulting in lateral diurnal thermal 
variations.50 In addition, the various concentrations of algal blooms 
are also attributed to the global changes in climate and anthropogenic 
activities.51 Whereas climate change affects algal formation at a 
global scale, the local anthropogenic activities – such as nutrient load 
into the Vaal Dam – are more important in controlling algal densities. 
This is particularly important considering the various forms of human 
activities occurring at different parts of the Vaal River Basin. The higher 
concentrations were usually found where the Dam has a meandering 
shape, especially in the northern part of the Dam, although some higher 
chl-a concentrations occurred within the Dam. The northern part is 
where the Vaal River flows into the Vaal Dam, contributing a greater 
proportion of nutrient load.52

a

c

e

d

f

b

Figure 5:	 The stepwise logistic regression results depicting predicted 
distribution of chl-a within the Vaal Dam. The true colour maps 
are indicated by (a), (c) and (e) and their corresponding results 
in (b), (d) and (f).

Figure 6:	 Correlation between the predicted chl-a concentrations and 
measured log-transformed chl-a concentrations within the 
Vaal Dam.

From the Landsat data acquired for April 2014, high concentrations of 
chl-a were estimated to be in the southeasterly part of the Dam – a flood 
plain composed mainly of productive agricultural lands. The sections 
located next to the Dam wall (in the northwestern side) had relatively low 
chl-a concentrations in 2014, while in 2015 there was a shift in terms 
of chl-a in that previously low class water sections became high class 
sections. From the 2016 image analysis, it becomes apparent that the 
2015/2016 drought reported in South Africa resulted in increased algal 
blooms at the study area, especially where the Vaal River enters the Dam. 
There has been a pronounced shift in chl-a concentrations from very 
sparse concentrations to very dense concentrations since 2014. Factors 
that might have contributed to this spatial chlorophyll shift may be a 
response to the rapid warming of the water along Vaal tributaries during 
the September to November months, and rapid cooling during April to 
June.53 These rapid temperature variations create a situation in which the 
growth rates of freshwater eukaryotic phytoplankton generally stabilise, 
while growth rates of many cyanobacteria increase, thereby providing 
a competitive advantage.54,55 The rapid growth of cyanobacteria in the 
Vaal Dam during April marks the final dominance of both Anabaena and 
Microcystic species, followed by a period of very low blooms during 
the winter months (May–August). The stability of the Vaal Dam (as a 
slow-circulating dam) and the availability of phosphates in the water are 
usually amongst the contributing factors to the sudden algal development 
in case II water bodies.56 Both phosphorus and nitrogen are some of the 
crucial biochemical components of plant organic matter, and previous 
studies have shown that remote sensing data can be used to estimate 
such chemical components in plants.57

Pollution in the Vaal Dam
Both cyanobacteria and algae grow naturally in water bodies. However, 
anthropogenic activities play a major role by influencing the rate of growth of 
algal blooms.6,58 Several anthropogenic activities were identified as primary 
contributors to the algal blooms in the Vaal Dam, resulting in an obvious 
increase in the eutrophication levels. These activities include dissolved urban 
effluents, heavy metal contaminants, mining and industrial effluent, most of 
which are nutrient rich.59 These contaminants have their origin in tributaries 
upstream, such as those of the Vaal River and the Wilge River. The tributaries 
of the Vaal River may be most important because they drain from some 
highly industrialised areas of Gauteng and Mpumalanga. The concentrations 
of chl-a in the Vaal Dam have exceeded 70 µg/L since 2005 and continue to 
increase annually as a result of a combination of many factors.60 It has been 
reported that most of the significant water quality challenges emerge from 
biological materials (from faecal solid materials) and chemical materials 
(from gold mining and industrial pollutants).61 All of these factors render the 
Vaal Dam eutrophic, which means that the reservoir contains, among other 
water quality indicators, a chl-a greater than 5 µg/m3.37
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Considerations
The aim of the study was to estimate the chl-a concentrations within the 
Vaal Dam, using the Landsat OLI data set. This study was successful 
in classifying chl-a into two classes – low concentrations and high 
concentrations. The SLR model used identified different significant 
variables within each data set, although the trend of occurrence was 
similar in all instances. The classification was done in autumn, which 
is the period that corresponds with the highest chl-a content within 
the Vaal  Dam.37 In the current study, high chl-a concentrations were 
associated with the presence of dominant Cyanophaceae group 
(Anabaena and Mycrocystis) species. The current analysis is primarily 
relevant for remediation purposes, in that it provides estimates of the 
status quo during the high cyanobacteria and algae blooming season. 
Mapping chl-a concentrations during these time periods is key for 
implementing remediation strategies against eutrophication as dictated 
by the South African National Water Act (Act no. 36 of 1998), and does 
not guarantee similar concentrations in subsequent years unless the 
anthropogenic and biophysical/chemical conditions are maintained. 
Predicting the potential distribution of chl-a in the Vaal Dam during low 
cyanobacteria and algae periods could be essential for planning and 
management purposes. Knowing where the potentially high densities 
of chl-a are likely to be will enable the water resource managers to 
strategically allocate limited financial resources for water treatment 
using algaecides in the Vaal Dam.

The mapping of chl-a in the current study may have been limited by 
the atmospheric correction method used for the study. It was not the 
purpose of the current study to compare the performance of atmospheric 
correction algorithms as such studies have been done elsewhere.11 
However, it is possible that the accuracy of estimates may have been 
affected by the atmospheric correction method used. Additionally, 
the number of training and validation points may have impacted on 
the accuracy of the SLR model for both Landsat OLI and MODIS data 
sets. The difference in ground sampling distance between Landsat 8 
OLI (15 m pan-sharpened) and MODIS (250 m) could have affected the 
classification accuracy of the SLR model, as could the lower number 
of validation points (n=20). However, apart from these considerations, 
Landsat 8 has shown potential for mapping chl-a concentrations in 
turbid waters in South Africa.

Conclusions
Both the remote sensing indices (difference vegetation index) and the 
individual spectral bands (NIR-red) were used successfully to estimate 
chl-a in the turbid Vaal Dam water. The sensitivity of NIR-red models 
is dependent upon the optical characteristics of a reservoir and thus 
has different variable significance in similar locations but at different 
times. The field data set used for the 2016 Landsat 8 image showed 
that there exists a strong correlation between predicted and measured 
chl-a concentrations peculiar to the Vaal Dam. Landsat 8 data remain 
useful for estimation of chl-a concentrations in trophic waters and the 
integration of information from both MODIS and Landsat coupled with 
field data could assist in constant monitoring of larger water bodies 
in South Africa. The Landsat heritage is crucial for studying long-term 
variations of slow-circulating water bodies in South Africa amidst water-
related challenges faced nationally. Additionally, testing the effect of 
atmospheric correction algorithms for South African conditions could 
be useful, although the QUAC atmospheric correction algorithm used 
produced reliable results with a high classification accuracy.
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