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In attempting to resolve the phylogenetic relationships of fossil taxa, researchers can use evidence from 
two sources – morphology and known temporal ranges. For most taxa, the available evidence is stronger 
for one of these data sources. We examined the limitations of temporal data for reconstructing hominin 
evolutionary relationships, specifically focusing on the hypothesised ancestor–descendant relationship 
between Australopithecus sediba and the genus Homo. Some have implied that because the only known 
specimens of A. sediba are dated to later than the earliest fossils attributed to Homo, the former species is 
precluded from being ancestral to the latter. However, A. sediba is currently known from one site dated to 
1.98 Ma and, thus, its actual temporal range is unknown. Using data from the currently known temporal 
ranges of fossil hominin species, and incorporating dating error in the analysis, we estimate that the 
average hominin species’ temporal range is ~0.97 Myr, which is lower than most figures suggested for 
mammalian species generally. Using this conservative figure in a thought experiment in which the Malapa 
specimens are hypothesised to represent the last appearance date, the middle of the temporal range, 
and first appearance date for the species, the first appearance date of A. sediba would be 2.95, 2.47 
and 1.98 Ma, respectively. As these scenarios are all equally plausible, and 2.95 Ma predates the earliest 
specimens that some have attributed to Homo, we cannot refute the hypothesis that the species A. sediba 
is ancestral to our genus based solely on currently available temporal data.

Significance:
• We correct a common misconception in palaeoanthropology that a species currently known only from 

later in time than another species cannot be ancestral to it.

• On temporal grounds alone one cannot dismiss the possibility that A. sediba could be ancestral to the 
genus Homo.

Introduction
In evaluating competing phylogenetic hypotheses there are two primary sources of data available to palaeontologists 
for most fossil taxa: the morphology of the taxa under investigation and their known temporal ranges. For many 
taxonomic groups, however, the quality of these two sources of data differs substantially. Some taxa are well known 
morphologically, yet are spatially and temporally restricted. Other taxa are well sampled across sites and through 
time, yet are represented by limited and/or fragmentary anatomical elements. While some researchers have argued 
that the incomplete nature of the fossil record makes temporal information unreliable for reconstructing phylogenetic 
relationships1,2, and that using ‘age to define...ancestry is eminently circular’3(p.439), morphological evidence 
regarding evolutionary relationships among fossil taxa can also be equivocal, such as when there are multiple 
equally parsimonious phylogenetic trees or when there is the potential that homoplasy has substantially influenced 
phylogenetic interpretations (see Wood and Harrison4 for a discussion of the latter in hominins). Consequently, it 
is important to consider the relative strengths of these sources of data when evaluating phylogenetic hypotheses. 

Here, we focused on the limitations of temporal data for reconstructing evolutionary relationships in the hominin 
fossil record, using Australopithecus sediba as a case study. Originally proposed as the probable ancestor of the 
genus Homo5,6, some have contended that this scenario is unlikely based on both morphological7-9 and, either 
directly or implicitly, temporal grounds (e.g. see comments by White in Balter10, Grine in Cherry11 and Richmond in 
Gibbons12). Leaving aside the morphological arguments for others to debate, here we examine the suggestion that 
the currently understood first appearance date (FAD) for A. sediba of ~1.98 Ma (million years ago) 5,6, in and of 
itself, negates it as a potential ancestor of the genus Homo because putative fossils of early Homo appear earlier in 
the geological record13,14. As these critiques derive from news pieces rather than scholarly articles it is possible that 
the quotes have been taken out of context and do not reflect what the researchers intended to say. However, they 
give the impression that at least some in the field of palaeoanthropology, like many in the general public and popular 
press (see Gibbons15 for a recent example), think that if all representatives of one taxon are found later in time than 
at least one specimen attributed to another taxon, it implies that the former cannot be members of the ancestral 
lineage from which the latter evolved. This issue is especially relevant as these misconceptions are currently being 
presented in college anthropology textbooks.16(p.154) 

As noted by Spoor7, two scenarios have been proposed that are consistent with the hypothesis that A. sediba is 
ancestral to Homo. First, Berger et al.5 hypothesised that the Malapa specimens represent late surviving members 
of the species that gave rise to Homo earlier in time. Second, Pickering et al.6 questioned the validity of specimens 
attributed to Homo that had been recovered from strata predating the Malapa deposits, and suggested that A. sediba 
cannot be precluded as a potential ancestor of Homo based on the age of the fossils from Malapa. Notwithstanding 
the difficulties in recognising early members of the genus Homo, we concur with Spoor7 that the first scenario 
is more likely. Therefore, in this paper we explore the question of whether it is plausible for A. sediba to be the 
ancestor of the genus Homo based on the FADs of specimens currently attributed to these two taxa.
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Research methods and data
Contemporaneous ancestors and descendants in the fossil 
record
Depending on the mode of speciation, it may or may not be possible for 
ancestral and descendant taxa to coexist in the fossil record. Speciation 
resulting from bifurcating cladogenesis or anagenesis (Figure 1: Modes 
1 and 2) precludes ancestors from being contemporaneous with their 
descendants because in both cases the entire ancestral species evolves 
into one or more descendant species. Alternatively, under a budding 
cladogenesis model of speciation (Figure 1: Mode 3) ancestors and 
descendants do co-occur.17 In budding cladogenesis, a subset of a 
species, usually a geographically isolated population, differentiates from 
the rest of the species and forms a new descendant taxon. Within the 
fossil record this is seen as a change in morphology in one population, 
while the remaining populations retain the ancestral form. Thus, as far 
as can be perceived, the ancestral species persists after giving rise 
to its descendant. Recent studies of animal and plant biogeography 
suggest that this mode of speciation is relatively common18, and there 
is genetic evidence that some ancestral species are extant, living 
contemporaneously with their descendants19. Some have even argued 
that budding cladogenesis is the primary mode by which species 
arise, with most ancestral taxa existing contemporaneously with their 
descendants for some time.20,21

Figure 1: Modes of speciation: (1) bifurcating cladogenesis, (2) anage-
nesis and (3) budding cladogenesis. In both Modes 1 and 2, 
ancestors cannot be contemporaneous with their descen-
dants as the entire ancestral species evolves into one or more 
descendant species. In Mode 3, ancestral and descendant 
taxa can coexist as a, typically geographically isolated, 
population speciates from the main population, which retains 
its species integrity. 

The coexistence of ancestral and descendant species, which would 
imply that the latter species evolved via budding cladogenesis, has been 
hypothesised to be present in the fossil record for a variety of invertebrate 
groups including bryozoans, ostracods and mollusks (see citations 
in Gould22). Additionally, budding cladogenesis has been suggested, 
either explicitly or implied through the hypothesised coexistence 
of ancestors and descendants, in phylogenetic reconstructions of 
numerous mammalian groups spanning almost the entire range of 
body sizes including rodents23, suids24,25, equids25, hippopotamids26 
and proboscideans25,27. 

Among hominins, examples of putative ancestral and descendant species 
existing contemporaneously include Homo habilis and Homo erectus, 
H. erectus and most later Homo species, and Australopithecus afarensis 
and Australopithecus africanus.4,28,29 Even the transition of 
Australopithecus anamensis into A. afarensis via anagenesis – generally 
considered to be the strongest example of this mode of speciation in 
the early hominin fossil record30,31 – has been questioned based on a 
critical reevaluation of the morphological differences between the older 
A. afarensis material from Laetoli and specimens from the younger 

Hadar deposits32. Moreover, fossils tentatively assigned to A. afarensis 
from the site of Fejej in southern Ethiopia (e.g. Fleagle et al.33,34 but see 
Ward35 for an alternative view) overlap with the currently known temporal 
range of A. anamensis.36 If this diagnosis holds, then the evolution of 
A. afarensis from A. anamensis must have also occurred via budding 
cladogenesis. Although some have argued that the evidence for hominins 
rarely meets the criteria for budding cladogenesis, specifically that there 
are few examples of ancestors and descendants overlapping in time30, 
if we accept that speciation in hominins can occur via this mechanism, 
as appears to be common in many other taxa, then contemporaneity in 
and of itself cannot be used to refute a potential ancestor–descendant 
relationship between A. sediba and the genus Homo, just as the proposed 
~250 kyr of temporal overlap between H. erectus and H. habilis in 
East Africa does not preclude the latter taxon from being the progenitor 
of the former.29,37

Recognising budding cladogenesis requires documenting that ancestors 
and descendants co-occur in the fossil record. It is of course implicit that 
any specimens utilised are correctly identified to taxon. As an analysis 
of hominin alpha taxonomy is beyond the scope of this paper, we rely 
on the analyses of the experts working on the species in question for 
the identification of the earliest and latest examples of each taxon. 
Detailed criteria for identifying ancestors in the fossil record are set out 
by Delson3. If, for example, one seeks to test whether it is plausible that 
A. sediba is the ancestor of the genus Homo it would first be necessary 
to provide evidence that A. sediba is the sister taxon of the genus Homo 
(i.e. that it shares synapomorphies with Homo that other hominin taxa 
do not possess). A sister group relationship has been suggested in an 
extensive recent phylogenetic analysis of hominins38 and in the original 
description of A. sediba5; however, as with any phylogenetic hypothesis, 
it must withstand further testing by other researchers, especially 
when additional evidence is obtained. For A. sediba to be ancestral to 
the genus Homo it would also have to exhibit more primitive hominin 
features (plesiomorphies) than Homo and cannot exhibit any uniquely 
derived characters (autapomorphies) as these would indicate that it is 
also a descendant of the ‘true ancestor’ of both groups. If these criteria 
are met then one could argue that A. sediba corresponds to the ancestral 
morphotype of the node shared with Homo that links them as sister taxa. 
Moreover, Delson3(p.440) cogently argues that only after morphological 
criteria are met should one then consider other data such as a taxon 
being ‘widespread, polytypic, anatomically well known and perhaps of 
“correct” geographic and chronological age’. 

The incomplete nature of the fossil record
The known fossil record likely represents fewer than half of the species 
that have lived39, albeit with large differences in representation among 
taxonomic groups, as a result, at least partly, of differential preservation40. 
With respect to primates, it is estimated that between about 3.8% and 7% 
of taxa have been sampled in the fossil record.41,42

Although it is implicit in evolutionary theory that some portion of an 
ancestral taxon necessarily preceded its descendants3, palaeontologists 
have long recognised that ancestors can potentially be found in strata 
dated to later in time than those of their descendants as a consequence 
of the incomplete nature of the fossil record3,43. For example, even after 
accounting for the known temporal ranges of the ‘abundant and heavily 
studied’ North American fossil hipparionines, Alroy44(p.167) notes that the 
most parsimonious phylogenetic hypothesis has two ancestral species 
that, based on the available evidence, arose one million years after their 
descendants, and two additional ancestral taxa that have the same FAD 
as their descendants. In other examples, the possibility of descendant 
taxa preceding their ancestors was explored by researchers studying 
graptoloids and echinoids.45,46 Although these researchers ultimately 
judged those scenarios as less likely than alternative phylogenetic 
hypotheses, they did not dismiss them based solely on descendants 
being present in the known fossil record prior to their ancestors. 

One might argue that the intensive focus on recovering hominins over 
the past ~100 years at sites in East and South Africa would have 
resulted in a relatively complete fossil record. However, hominins make 
up very small percentages of most Plio-Pleistocene faunal assemblages 
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when compared to other medium- and large-sized mammals. Although 
published percentages are not fully comparable as different research teams 
include different taxonomic groups and body size subsets of the overall 
mammalian assemblages in their data sets, hominins are nonetheless 
relatively rare at most African sites from this time period. For instance, 
hominins make up only 5.3% of the reported mammalian assemblages at 
sites yielding robust australopiths in South Africa,47 and even this figure is 
likely to be an overestimate given the enhanced scrutiny that they receive 
relative to non-hominins. Hominins are even less common (<2%) at sites 
in East Africa such as Omo, Hadar and Laetoli48-50, although they make up 
a greater percentage (9% of the vertebrate fauna) of the smaller sample 
of mammalian fossils from Kanapoi51. 

If we accept that hominin fossils are rare, their recovery is likely to be 
more strongly influenced by stochastic factors than is the case for other 
mammals (e.g. bovids or suids). Consequently, current FADs and last 
appearance dates (LADs) for hominins are likely not representative 
of their actual temporal ranges52,53, and the FADs of hominins that are 
not known from long stratigraphic sections in particular are ‘subject to 
substantial error’ 54(p.10375). Moreover, some have noted that the hominin 
record has ‘a disproportionate contribution from the East African Rift 
Valley’ and, accordingly, have contended that this ‘precludes firm 
conclusions regarding immigration or speciation events’50(p.178). It is 
entirely possible that earlier (or later) populations of hominin species that 
are currently only known from one or a few localities and from a limited 
temporal range will be identified in under-sampled regions of Africa. 
Depending on how many distinct hominin species one recognises, there 
are as many as seven that are currently known from only one locality (i.e. 
they are arguably ‘single hits’) (Table 1). As Foote and Raup55(p.136) argue, 
‘a very high frequency of single hits suggests the possibility of a poor 
fossil record which should be analyzed with caution’. The implications of 
the above are that hominins are not as well known as might be expected 
based on the number of published articles on this group, and that a 
substantial amount of the hominin fossil record may be unknown. This 
claim is bolstered by the relatively large number of new hominin taxa 
named over the past 25 years, which has nearly doubled the number of 
putative hominin species (see citations in Wood and Boyle56). As such, 
it is likely that even the more generous estimates for hominin species 
durations significantly underestimate the true temporal ranges of these 
taxa, and this needs to be considered when evaluating hypotheses of 
ancestor–descendant relationships.

Species temporal ranges
Numerous methods have been developed to estimate ‘true’ temporal 
ranges for fossil taxa,45,57-59 but none of these methods can be applied 
to A. sediba because they require that specimens be known from more 
than a single stratum. Thus, calculating confidence intervals for the FAD 
and LAD of A. sediba using these methods is not possible and we must 
use indirect methods for estimating its temporal range. 

One million years (Myr) has been cited as the typical mammalian species 
longevity (e.g. Martin41 and references therein), a value that can be traced 
back through several studies to Kurtén’s60 analysis of the Pleistocene 
mammals of Europe. In contrast, recently compiled average species 
durations from a survey of published data sets of Cenozoic mammals 
ranged from 0.8 to 6.3 Myr.61 Although these types of estimations are 
highly dependent on the group of mammals under consideration (e.g. 
large versus small mammals) and the data set used, most of the studies 
yielded average species durations between 2 and 4 Myr.61 Taxonomic 
practices (e.g. tendencies to ‘lump’ or ‘split’) also influence estimates of 
species longevity and vary between groups. Given that related taxonomic 
groups tend to share similar preservation potential17,58, and similar risks 
of extinction40, it seems most appropriate to use the temporal ranges of 
fossil primate species in general, and hominins in particular, as models 
for hominin species durations.

Unfortunately, few estimates of overall primate species longevity can 
be found in the literature (e.g. Martin41). Based on published hominin 
species temporal ranges from a recent study,56 the estimated average 
hominin species longevity is 0.43 Myr, which is substantially lower than 
that of other mammalian groups. However, these estimates include 
taxa that are recorded from only one locality. Given that species known 

from a single locality cannot provide an estimate of the temporal range 
of that species, unless that locality samples a range of time within 
well-defined strata, removing them from these calculations seems 
appropriate. By removing these taxa, and Homo sapiens, which lacks 
an LAD at the time of writing, the average hominin species duration 
would be 0.50 Myr using published hominin species range data, and 
0.80 Myr when the estimates of dating error from Wood and Boyle56 
are incorporated (Table 1). Furthermore, if we group hominin species 
that many researchers ‘lump’ together (e.g. those that are listed as ‘low 
confidence’ in Table 2 of Wood and Boyle56), the average published, and 
with dating error, species durations for hominins rise to 0.62 and 0.97 
Myr, respectively (Table 1). We acknowledge that the choice of which 
taxa to retain may not be agreed upon by all researchers, but note that 
the larger 0.97 Myr average hominin species duration utilising the data 
set with error is still on the low end of the ranges reported for other 
groups of mammals,61 and is very close to the 1.0±0.25 Myr range 
suggested by Wood and Boyle56. As such, we will use this estimate to 
assess the possibility that, based on their currently estimated temporal 
ranges, A. sediba could be ancestral to the genus Homo.

Using 0.97 Myr as the average species duration for hominins, we estimate 
three temporal distributions for A. sediba by assuming that the Malapa 
specimens represent either the LAD, midpoint or FAD of the species 
(Scenarios 1, 2, and 3) (Figure 2). If we assume the Malapa specimens 
represent the LAD (Scenario 1), then the species would have originated 
around 2.95 Ma and gone extinct at 1.98 Ma. Alternatively, if Malapa 
is at the midpoint of the temporal range for the species (Scenario 2), 
then A. sediba can be estimated to have arisen at around 2.47 Ma and 
gone extinct at around 1.49 Ma. Finally, the possibility that the Malapa 
specimens represent early members of the species, chronologically 
closer to or at the speciation event (FAD) (Scenario 3), yields a potential 
temporal range of 1.98–1.01 Ma.

Thus, Scenarios 1, 2 and 3 would date the FAD of A. sediba to 2.95, 2.47 
and 1.98 Ma, respectively, with all three being equally plausible based 
on currently available temporal data. The earliest specimen that some 
have attributed to the genus Homo is the partial mandible LD 350-1 from 
Ledi-Geraru, which is dated to 2.75–2.8 Ma.14 Under Scenarios 2 and 3 
in which the Malapa specimens represent the midpoint of the temporal 
range or the FAD of A. sediba it would not be possible for that species to 
be the ancestor of the genus Homo based on the estimate we are using 
for the average hominin temporal range. However, under Scenario 1 (i.e. 
the Malapa specimens represent the LAD for A. sediba), this ancestor–
descendant relationship would be possible even if we incorporate 
the ‘with error’ FAD estimates from Wood and Boyle56 for LD 350-1 
(Figure 2). 

It is important to carefully examine whether the first scenario is plausible, 
because if it is not, then the possibility that A. sediba is ancestral to 
the genus Homo would be considered unlikely given the parameters 
discussed above. In this regard, we make several observations. First, if 
the Malapa specimens are correctly identified as part of an ‘australopith 
adaptive grade’5 then these deposits likely contain some of the latest 
surviving members of the gracile form of this grade of early hominin. 
As such, the dates for the Malapa deposits may be close to the LAD 
for A. sediba. Second, given the mosaic nature of the morphology of 
A. sediba5 and, thus, the difficulty of determining whether the taxon is 
represented by other, more incomplete specimens in the hominin fossil 
record, it may be that researchers have already recovered, or will recover 
at a later date, other fossils from earlier (or later) in time that should be 
attributed to this taxon. Furthermore, we note that some researchers 
have questioned the taxonomic attribution of LD 350-1.62 If the specimen 
does not belong to the genus Homo, the earliest putative specimens of 
our genus would be dated to ~2.4 Ma using published hominin species 
range data,13 and 2.6 Ma utilising the ‘with error’ data (Table 1). As 
such, both Scenarios 1 and 2 would be possible if 2.4 Ma accurately 
reflects the FAD for Homo, although again, only Scenario 1 remains 
possible at a 2.6 Ma FAD for Homo. Recall, however, that the 0.97 Ma 
average hominin duration used to generate a FAD for A. sediba is only 
an estimate based on current temporal range data from other hominins 
that also suffer from incomplete sampling. It is entirely possible that this 
figure underestimates the true temporal range for A. sediba. 
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Table 1: Data from Wood and Boyle56 used to calculate average hominin species duration estimates. The first series represent the ‘conservative’ data 
with corresponding first appearance date (FAD), last appearance date (LAD) and temporal ranges, while the second series represents the ‘with 
error’ data. Calculated average hominin durations are provided in bold, with those in brackets generated using a lumping approach. Taxa that were 
grouped together are indicated by footnotes. Taxa below the dashed line are considered single hits and were not used in average hominin species 
duration calculations. 

Observed rangea Dating error incorporatedb

Taxon FAD LAD Range FAD LAD Range

Orrorin tugenensis 6 5.7 0.3 6.14 5.52 0.62

Ardipithecus kadabba 6.3 5.2 1.1 6.7 5.11 1.59

Ardipithecus ramidus 4.51 4.3 0.21 4.6 4.262 0.338

Australopithecus anamensis 4.2 3.9 0.3 4.37 3.82 0.55

Australopithecus afarensis 3.7 3 0.7 3.89 2.9 0.99

Kenyanthropus platyops 3.54 3.35 0.19 3.65 3.35c 0.3

Australopithecus deyiremedad 3.5 3.3 0.2 3.596 3.33 0.266

Australopithecus africanus 3 2.4 0.6 4.02 1.9 2.12

Paranthropus aethiopicus 2.66 2.3 0.36 2.73 2.23 0.5

Paranthropus boisei 2.3 1.3 1 2.5 1.15 1.35

Paranthropus robustus 2 1 1 2.27 0.87 1.4

Homo habilis 2.35 1.65 0.7 2.6 1.65c 0.95

Homo rudolfensis 2 1.95 0.05 2.09 1.78 0.31

Homo erectus 1.81 0.027 1.783 1.85 0.027c 1.823

Homo ergastere 1.7 1.4 0.3 2.27 0.87 1.4

Homo antecessorf 1 0.936 0.064 1.2 0.936c 0.264

Homo heidelbergensis 0.7 0.1 0.6 0.7c 0.1c 0.6

Homo helmeif 0.26 0.08 0.18 0.26c 0.08c 0.18

Homo neanderthalensis 0.13 0.04 0.09 0.197 0.03922 0.15778

Homo rhodesiensisf 0.6 0.3 0.3 0.6c 0.3c 0.3

Average 0.501 (0.620) 0.800 (0.969)

Sahelanthropus tchadensisg 7.2 6.8 0.4 7.43 6.38 1.05

Australopithecus bahrelghazalig 3.58 3.58 – 3.85 3.31 0.54

Australopithecus garhig 2.5 2.45 0.05 2.53 2.488 0.012

Australopithecus sedibag 1.98 1.98 – 2.05 1.91 0.14

Homo georgicusg 1.85 1.77 0.08 1.85c 1.77c 0.08

Homo floresiensisg 0.074 0.017 0.057 0.108 0.016 0.092

Homo sapiensg 0.195 0 0.195 0.2 0 0.2

Homo naledih 0.286 0.286 – ? ? ?

aConservative estimates reported in Wood and Boyle56(table 1).
bEstimates with dating error reported in Wood and Boyle56(table 1).
cNo ‘with error’ date provided in original publication; this value represents those reported in the ‘conservative estimate’.
dTaxon and associated dates lumped with A. afarensis in calculation of temporal range.
eTaxon and associated dates lumped with H. erectus in calculation of temporal range.
fTaxon and associated dates lumped with H. heidelbergensis in calculation of temporal range.
g’Single hit’ taxa not considered in calculating average hominin duration.
hMid-range of most parsimonious age estimates reported in Dirks et al.67 
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Thus, although arguments can be made against Scenarios 2 and 3, we 
find insufficient evidence to refute Scenario 1, and, as a result, would 
argue that it is not implausible that A. sediba is the ancestor of the 
genus Homo based on our analysis of the dates of specimens currently 
attributed to these and other hominin taxa. 

Conclusions
While some researchers have critiqued the hypothesis that A. sediba is 
ancestral to the genus Homo on morphological grounds, others have 
based their criticism, at least partly if not largely, on the date of the 
Malapa specimens. Although the known temporal range of a fossil 
species can be an important piece of evidence in testing ancestor–
descendant hypotheses, palaeontologists do not typically dismiss the 
possibility that a fossil species is the ancestor of another based solely 
on the two species’ currently recognised FADs.44-46 Echoing previous 
researchers3,63,64, Foote17(p.147) argues, ‘whether species are preserved 
in the ‘wrong’ order does not affect the facts of their genealogical 
relationships, which we must attempt to reconstruct regardless of where 
we find the species stratigraphically’. This does not mean that temporal 
data cannot be informative, particularly for taxa that have a well-sampled 
fossil record, such as deep-sea microplankton.43 However, if a taxon is 
not well known in the fossil record and/or is only known from a highly 

localised area, such as is the case for A. sediba and many other hominins 
(Table 1), the likelihood that its known record is an accurate reflection of 
the entire temporal range during which that taxon lived is substantially 
reduced. This limitation is demonstrated by the specimens attributed to 
Homo floresiensis and Homo naledi that are both suggested to have 
ghost lineages extending back much earlier in time based on their more 
primitive morphological features.65,66 FADs and LADs are especially likely 
to be inaccurate for taxa like early hominins that had low population 
densities and ‘relatively sparse fossil records’53(fig.1). Therefore, it is 
difficult to have confidence in hypothesised evolutionary relationships 
that are based on the dates attributed to a handful of specimens. 

Criticisms of the putative relationship of A. sediba and Homo based 
on their relative temporal ranges may be related, in part, to a dispute 
over the mode by which hominin species arose, with some taking the 
view that budding cladogenesis occurred rarely, if at all, in hominin 
evolution (e.g. White et al.30). However, as discussed above, this mode 
of speciation appears to be relatively common in mammalian, including 
hominin, evolution. Given that there is no theoretical reason to suspect 
that human evolution was any different than the evolution of any other 
mammal, we would argue that it would not be unusual to find evidence 
for contemporaneous ancestors and descendants in the human fossil 
record (e.g. Spoor et al.29).

Homo 
erectus

Homo 
rudolfensis

Homo 
habilis

Ledi-
Geraru

Australopithecus 
sediba

LAD 
(Scenario 1)

1.98 Ma 
Known age of 

A. sediba specimens

Middle 
(Scenario 2)

FAD 
(Scenario 3)

0

1

2

3

Ma

Figure 2: Estimates of the temporal ranges of the earliest species attributed to the genus Homo and potential durations for Australopithecus sediba 
assuming the Malapa specimens represent the last appearance date (LAD; Scenario 1), the middle of the species actual temporal range 
(Scenario 2) or first appearance date (FAD; Scenario 3) using an average hominin temporal duration of 0.97 Myr. Data used to generate the 
figure are from Table 1. Solid bars represent ranges using the ‘conservative’ data set while error bars incorporate both the ‘with error’ data and a 
lumping of the ‘low confidence’ taxa from Wood and Boyle56. Graded shading on the bars for A. sediba indicates the greater degree of uncertainty 
that the taxon existed at the time indicated. 
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Finally, we stress that the date for the Malapa deposits containing the 
A. sediba specimens should be interpreted for what it is – evidence 
of one particular moment in time when the species existed, but which 
cannot provide an accurate estimate of the lineage’s temporal range (i.e. 
absence of evidence is not evidence of absence). In this paper, we are 
neither advocating for the position that A. sediba is the ancestor of the 
genus Homo, nor are we addressing questions about the taxonomic 
attribution of the Malapa specimens. We are merely pointing out that 
the critiques of A. sediba as a potential ancestor of the genus Homo 
based on temporal criteria are at the very least premature and are prone 
to misinterpretation by the media and general public. Until such time 
as additional data on its temporal range are available for A. sediba, any 
inferences about the evolutionary relationship between it and Homo 
should be based primarily on morphological data. While the arguments 
presented here have specifically revolved around one taxon, they are 
germane to studies of all hominin taxa in the fossil record, particularly 
‘single hit’ taxa (Table 1) for which we have no clear understanding 
of the species’ true temporal range. As such, we urge caution for all 
scientists involved in studies of human evolution to carefully think 
about how temporal data can, and should be, used in assessing 
phylogenetic hypotheses.
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