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Escherichia coli with virulence factors and 
multidrug resistance in the Plankenburg River

Escherichia coli is a natural inhabitant of the gut and E. coli levels in water are considered internationally 
to be an indication of faecal contamination. Although not usually pathogenic, E. coli has been linked to 
numerous foodborne disease outbreaks, especially those associated with fresh produce. One of the most 
common ways through which E. coli can be transferred onto fresh produce is if contaminated water is used 
for irrigation. In this study, a total of 81 confirmed E. coli strains were isolated from the Plankenburg River 
as part of three separate studies over 3 years. During sampling, E. coli levels in the river were above the 
accepted levels set by the World Health Organization and the South African Department of Water Affairs 
and Forestry for safe irrigation of fresh produce, which indicates that transfer of E. coli during irrigation is 
highly probable. Multiplex polymerase chain reaction screening for pathogenic gene sequences revealed 
one enteroaggregative positive strain and four enteropathogenic positive strains. The four enteropathogenic 
strains were also found to be resistant to three or more critically and highly important antibiotics and were 
therefore classified as multidrug resistant strains. These results show that E. coli with enteropathogenic 
potential and multiple antimicrobial resistance properties has persisted over time in the Plankenburg River.

Introduction
Escherichia coli is a natural inhabitant of the gut of humans, birds and other warm-blooded animals and is widely 
accepted as an indicator of faecal contamination of water. It is a robust bacterium which is genetically highly 
adaptable to environmental stresses, and has been shown to survive and multiply in the environment.1,2 Based 
on the aforementioned, concerns have been raised in recent years regarding the status of E. coli as just a faecal 
indicator organism.3

Although most strains are commensal, pathogenic E. coli strains can contain various virulence factors and can be 
responsible for a variety of infections.4 Based on the specific virulence factors present, pathogenic E. coli can be 
classified as either extra-intestinal pathogenic E. coli (ExPEC) or intestinal pathogenic E. coli (InPEC). ExPEC strains 
are usually able to cause infections in anatomical sites outside of the intestinal tract and are associated with urinary 
tract infections, neonatal meningitis and septicaemia. ExPEC, like commensal E. coli, can colonise the intestinal 
tract without causing gastroenteritis. In contrast, InPEC strains can cause different types of gastroenteritis and can 
be divided into six pathogenic groups: enterohaemorrhagic (EHEC); enteropathogenic (EPEC); enteroaggregative 
(EAEC); enterotoxigenic (ETEC); enteroinvasive (EIEC) and diffusely adherent (DAEC) E. coli. Each of the InPEC 
types has different infection mechanisms and symptoms.4

Foodborne disease outbreaks linked to pathogenic E. coli, specifically those derived from fresh produce, are 
increasing both in number and intensity.5 As a result, E. coli is considered to be an emerging pathogen. One 
of the most common means by which E. coli can be transferred to fresh produce is via contaminated irrigation 
water. Recognising this potential danger, the World Health Organization (WHO) and the South African Department 
of Water Affairs (DWA) have set a recommended limit for irrigation water used for fresh produce of 1000 faecal 
coliforms/100 mL.6,7

Long-term monitoring studies of the Plankenburg River have revealed that although faecal coliform loads vary 
depending on the season, the loads are above the recommended limits.8 The Plankenburg River flows past an 
informal settlement as well as through an industrial area of the town of Stellenbosch before it converges with the 
Eerste River and flows through an agricultural region, where the water is withdrawn for irrigation. Constant high 
faecal coliform levels might therefore contribute to the possible transfer of E. coli during irrigation, if river water is 
not treated prior to irrigation.

Although the presence of several potential pathogens in the Plankenburg River has been reported,8 the occurrence 
and types of pathogenic E. coli are not known. The aim of this study was therefore to determine the number, types 
and antibiotic susceptibility of potential pathogenic E. coli present in the Plankenburg River.

Materials and methods

Sampling
Water samples from which E. coli was isolated were collected from the Plankenburg River (Stellenbosch, Western 
Cape Province) at three sites (P-0, P-1 and P-2).8 The P-0 sampling site was about 5 km upstream of the P-1 site 
and was selected specifically to assess the impact of an informal settlement and industrial area on the water quality 
of the Plankenburg River. However, for large parts of each year, especially during the dry summer months, this 
site had no flowing water and therefore it was not sampled at the same frequency as the other sites. Two of the 
sites – P-1 and P-2 – are situated downstream of an informal settlement and industrial area and have shown high 
levels of faecal contamination.8 River water sampling was done in accordance with the SANS 5667-6 method9; all 
samples were 1 L in volume.
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E. coli isolation and identification

Study 1 (year 1):
Daily, for 9 days, 1 L of water was collected aseptically at site P-1. The 
presence of coliforms, faecal coliforms and E. coli were determined 
using the multiple tube fermentation (MTF) technique.10 The E. coli broth 
tubes that exhibited gas production as well as fluorescence after 24 h 
incubation at 44.5 °C were streaked onto Eosin Methylene-blue Lactose 
Sucrose (L-EMB) agar (Oxoid, Hampshire, UK). Five typical E. coli 
colonies (dark purple to black colonies with a distinct metallic sheen) 
from each of the water samples were selected using Harrison’s disc 
method11 and further purified using Brilliance™ E. coli/coliform selective 
agar (Oxoid).

Study 2 (year 2):
Daily, for 14 days, 1 L of water was collected aseptically at site P-2. 
E. coli enumeration was done according to the American Public Health 
Association Standard Method12 and Violet Red Bile Agar (Merck, 
Johannesburg, South Africa) was used for the enumeration. For further 
analysis, representative Enterobacteriaceae colonies (red and pink) were 
selected using Harrison’s disc method.11 The selected colonies were 
further purified using Brilliance™ E. coli/coliform selective agar (Oxoid).

Study 3 (year 3):
As part of a larger environmental study, sites P-0, P-1 and P-2 were 
sampled twice. Enumeration of total coliforms and E. coli was done 
according to SANS 930813 using Colilert 18 (IDEXX, Cape Town, 
South Africa). The Colilert 18 method is considered more user-friendly 
than the traditional MTF method used in Study 1, and it has been 
reported that Colilert results compare well with MTF results.14 After 
incubation,14 Quantitrays were divided into quarters and two fluorescent 
wells per quarter were pooled (1 mL per well to yield a maximum of 
8 mL). A dilution was made from the pooled extract and spread plates 
were prepared on L-EMB agar (Oxoid). Five typical E. coli colonies from 
each of the water samples were selected at the highest dilution using 
Harrison’s disc method11 and purified using Brilliance™ E. coli/coliform 
selective agar (Oxoid).

Characterisation and confirmation of E. coli identification
Each isolate was streaked out on nutrient agar (Biolab, Johannesburg, 
South Africa), and the analytical profile index (API) 20E system 
(BioMérieux, Johannesburg, South Africa) was used in conjunction with 
Gram staining, a catalase test and growth on MacConkey medium.15 
The profile was then entered into the API Web database (BioMérieux) 
for species identification. Isolates were stored in 40% (v/v) glycerol 
at -80 °C.

Polymerase chain reaction analyses
Cell extracts of all isolates were prepared prior to the polymerase chain 
reaction (PCR) using the method of Altalhi and Hassen16. Isolates 
identified as E. coli with API were tested for the presence of the 
E. coli uidA household gene using the primer sequences of Heijnen and 
Medema17 and KAPATaqTM HotStart DNA polymerase (KAPABiosystems, 
Cape Town, South Africa). Strains that tested positive for uidA were 
subjected to a multiplex PCR method as modified from Omar and 
Barnard18 to screen for the presence of InPEC genes (Table 1). Strains 
identified as InPECs were also screened for the presence of ExPEC 
genes19 and classified phylogenetically using the triplex PCR method of 
Clermont et al.20 for E. coli phylogenetic group (genogroup) identification. 
The Kapa2GTM Fast Multiplex PCR kit (KAPABiosystems) was used for 
the InPEC and ExPEC multiplex methods as well as for the triplex PCR 
method. Positive and negative controls were included in all PCRs, and 
all reactions were performed in a G-storm thermal cycler (Vacutec, 
Johannesburg, South Africa). Primer sequences and concentrations are 
presented in Table 1. Reaction conditions are presented in Table 2. PCR 
products were all visualised with UV illumination after gel electrophoresis 
in agarose gels containing 1 µg/mL ethidium bromide and 0.5 x TBE 

buffer. Gel electrophoresis was performed at 210V/20 min for the uidA 
PCR products and the triplex PCR products, using 1.25% agarose gels 
and 2% agarose gels, respectively. Gel electrophoresis of the InPEC and 
ExPEC PCR products were conducted at 120V/90 min using 1.25% 
agarose gels. A 100-bp marker (Promega, Madison, WI, USA) was 
included for size estimation purposes.

Table 1: Primer sequences used for uidA,17 triplex,20 InPEC18 and 
ExPEC19 polymerase chain reactions (PCRs)

Primer† Primer sequence (5’ - 3’) Size (bp)
Primer 

concentration

UAL 1939b

UAL 2105b

E. coli confirmation PCR17

ATGGAATTTCGCCGATTTTGC

ATTGTTTGCCTCCCTGCTGC

187 0.4 µM

E. coli control

Mdh01 (F)

Mdh02 (R)

EIEC

L-ial (F)

Ial (R)

EPEC & EHEC‡

L-eaeA (F)

L-eaeA (R)

EHEC

Stx1 (F)

Stx1 (R)

Stx2 (F)

Stx2 (R)

ETEC

LT (F)

LT (R)

ST (F)

ST (R)

EAEC

Eagg (F)

Eagg (R)

InPEC PCR18

GGTATGGATCGTTCCGACCT21

GGCAGAATGGTAACACCAGAGT21

GGTATGATGATGATGAGTCCA22

GGAGGCCAACAATTATTTCC22

GACCCGGCACAAGCATAAGC22

CCACCTGCAGCAACAAGAGG22

ACACTGGATGATCTCAGTGG23

CTGAATCCCCCTCCATTATG23

CCATGACAACGGACAGCAGTT23

CCTGTCAACTGAGCACTTTG23

GGCGACAGATTATACCGTGC22

CGGTCTCTATATTCCCTGTT22

TTTCCCCTCTTTTAGTCAGTCAACT18

GGCAGGATTACAACAAAGTTCACA18

AGACTCTGGCGAAAGACTGTATC24

ATGGCTGTCTGTAATAGATGAGAAC24

300

650

384

614

779

450

160

194

0.2 µM

0.2 µM

0.2 µM

0.2 µM

0.2 µM

0.2 µM

0.2 µM

0.2 µM

chuA.1 (F)

chuA.2 (R)

yjaA.1 (F)

yjaA.2 (R)

TSPE4.C2.1 (F)

TSPE4.C2.2 (R)

Phylogenetic group PCR20

GACGAACCAACGGTCAGGAT

TGCCGCCAGTACCAAAGACA

TGAAGTGTCAGGAGACGCTG

ATGGAGAATGCGTTCCTCAAC

GAGTAATGTCGGGGCATTCA

CGCGCCAACAAAGTATTACG

279

211

152

0.2 µM

0.2 µM

0.2 µM

papA (F)

papA (R)

papC (F)

papC (R)

sfa (F)

sfa (R)

iutA (F)

iutA (R)

kpsMT (F)

kpsMT (R)

ExPEC PCR19

ATGGCAGTGGTGTCTTTTGGTG

CGTCCCACCATACGTGCTCTTC

GTGGCAGTATGAGTAATGACCGTTA

ATATCCTTTCTGCAGGGATGCAATA

CTCCGGAGAACTGGGTGCATCTTAC

CGGAGGAGTAATTACAAACCTGGCA

GGCTGGACATCATGGGAACTGG

CGTCGGGAACGGGTAGAATCG

GCGCATTTGCTGATACTGTTG

CATCCAGACGATAAGCATGAGCA

717

205

410

302

272

0.2 µM

0.2 µM

0.2 µM

0.2 µM

0.2 µM

†F, forward primer; R, reverse primer 
‡EHEC strains should be eaeA positive as well as stx 1 and/or stx 2 positive
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Antimicrobial resistance testing
The E. coli pathogens identified with PCR analysis were also screened for 
antimicrobial susceptibility against Ampicillin (10 µg), Cephalothin (30 ug), 
Chloramphenicol (30 ug), Ciprofloxacin (5 µg), Tetracycline (30 µg), 
Trimethoprim (2.5 µg), and Streptomycin (S) (10 µg). This screening was 
done using the standard antimicrobial disc susceptibility test described 
by the US Clinical and Laboratory Standards Institute (CLSI).25 Inhibition 
zones were interpreted using the performance standards of CLSI26 (for 
Ampicillin, Cephalothin, Chloramphenicol, Ciprofloxacin, Tetracycline 
and Streptomycin) and Andrews27 (for Trimethoprim) and strains were 
classified as susceptible, intermediate or resistant. The American Type 
Culture Collection (ATCC) strain 25922 was included as a susceptible 
control in all antimicrobial resistance screening tests.

Standard cultures for PCR analysis
E. coli ATCC 25922 was used as a positive control in the uidA PCR and 
the triplex PCR. ATCC 25922 was also combined with ATCC 35218 and 
used as a positive control for the ExPEC multiplex PCR after the identity 
of bands amplified in the expected regions for papA, sfa/foc, iutA, kpsMT 
II and papC were confirmed with sequencing and BLAST identification. A 
combination of EPEC, EHEC, ETEC, EIEC and EAEC positive strains was 
used as a positive control for the InPEC multiplex PCR. 

Results and discussion

E. coli loads
The E. coli loads in the Plankenburg River samples and the number of 
confirmed E. coli strains are presented in Table 3. In all instances, the 
E. coli counts exceeded the WHO recommended limit for irrigation water 
used for fresh produce of 1000 faecal coliforms/100 mL.6 National 
guidelines set by the DWA associate risk with different E. coli levels in 
irrigation water: ‘no risk’ is associated with <1 E. coli/100 mL, ‘low risk’ 
is associated with 1–999 E. coli/100 mL and ‘high risk’ is associated 
with 1000–3999 E. coli/100 mL.7 Considering these guidelines, the 
E. coli levels at the time of analysis qualify as unacceptably high for 
the most part. It would therefore be a fair assumption to conclude that, 
under these conditions, the transfer of microbes from the Plankenburg 
River via irrigation onto the surface of fresh produce is highly probable.

Table 3: E. coli load ranges in the Plankenburg River and number of 
confirmed E. coli isolates

Study (sampling site) E. coli load range
Number of 
isolates

Study 1 (P-1) 29 000–790 000 MPN/100 mL 27

Study 2 (P-2) 3900–118 500 cfu/mL 30

Study 3 (P-0) 1600–20 000 MPN/100 mL 10

Study 3 (P-1) 250 000–1 000 000 MPN/100 mL 8

Study 3 (P-2) 2500–310 000 MPN/100 mL 6

E. coli with InPEC virulence genes
The 81 E. coli strains isolated from the river (Table 3) were positively 
identified by the API system and their identity was then confirmed using 
uidA PCR. The strains were then screened for InPEC gene sequences 
and the characteristics of the pathogenic E. coli strains identified are 
presented in Table 4. Of the 81 strains screened (Table 3), five pathogens 
were identified (one EAEC and four EPEC strains) (Table 4). This result 
concurs with previous reports that E. coli strains that carry pathogenic 
gene sequences represent 0.9–10% of E. coli present in surface waters.28 
It is interesting to note that the three EPEC strains isolated during Study 2 
(Table 4) had different biochemical (API) profiles, which suggests that 
they are not clones.

Table 4: Intestinal pathogenic (InPEC) E. coli strains isolated

Strain Source API profile code Genogroup Pathotype

E. coli H45 Study 1 (P-1) 5 0 4 4 5 5 2 5 7 A1 EAEC

E. coli A95 Study 2 (P-2) 1 0 4 4 5 7 2 5 7 B23 EPEC

E. coli A118 Study 2 (P-2) 5 1 4 4 5 5 2 5 7 B1 EPEC

E. coli A132 Study 2 (P-2) 5 0 4 4 5 5 2 5 7 B23 EPEC

E. coli S49a Study 3 (P-2) 1 0 4 4 5 7 2 5 7 B23 EPEC

EAEC, enteroaggregative E.coli; EPEC, enteropathogenic E. coli

The API profiles for all the pathogenic strains showed that they differed in 
three respects: production of lysine decarboxylase (LDC) and L-ornithine 
decarboxylase (ODC) and utilisation of saccharose. Variation in these 
three properties has been observed before in E. coli isolated from 
untreated surface waters and soil.29,30 It has furthermore been reported 
that E. coli can induce production of amino acid decarboxylases (such 
as LDC and ODC) in response to reduced pH conditions.31 This report 
illustrates the highly adaptable nature of E. coli which helps it survive in 
more acidic environments.32

Because the PCR-based detection method of Clermont20 was used to 
identify E. coli phylogenetic groups (genogroups), the four main groups 
(A, B1, B2 and D) can further be subdivided into seven subgroups to 
increase discrimination: A0, A1, B1, B22, B23, D1 and D2.

33 It has been 
reported that ExPEC strains usually belong to genogroups B2 and D, 
while InPEC strains that cause severe diarrhoea-related diseases (EIEC, 
EHEC and ETEC) are most commonly classified into genogroups A and 
B1.34 E. coli strains that cause mild and chronic diarrhoea (EAEC, EPEC 
and DAEC) can belong to any of the four main phylogenetic groups.34 It 
has, however, been reported that most human EPEC strains belong to 
genogroups B1 or B2.35 Carlos et al.36 examined E. coli from a variety 
of different primary hosts (human, goat, chicken, cow, sheep and pig) 
and found that B23 strains in particular could only be found in human 
samples. It was therefore concluded that the EPEC strains isolated from 
the river in this study were possibly of human origin, which suggests 
human faecal contamination of the Plankenburg River. The isolation data 

Table 2: Thermocycling conditions used for uidA, triplex, InPEC and ExPEC polymerase chain reactions (PCRs)

PCR method Thermocycling conditions

uidA 95 °C for 3 min, 35 cycles of 95 °C for 30 s, 59.7 °C for 30 s, 72 °C for 30 s, final extension at 72 °C for 5 min

InPEC multiplex 95 °C for 3 min, 30 cycles of 95 °C for 15 s, 55 °C for 30 s, 68 °C for 30 s, final extension at 72 °C for 5 min

Genogroup triplex 95 °C for 3 min, 30 cycles of 95 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, final extension 72 °C for 5 min

ExPEC multiplex 95 °C for 3 min, 30 cycles of 95 °C for 15 s, 61 °C for 30 s, 68 °C for 30 s, final extension at 72 °C for 5 min
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indicates that the contamination might also be constant over time, as 
similar EPEC strains were isolated during Studies 2 and 3 (Table 4).

Health implications
The enteroaggregative (EAEC) E. coli, detected during the first study 
(Table 4), affects the small intestine and causes mild but persistent 
watery diarrhoea (≥14 days) in people of all ages. It is frequently found 
in immunocompromised individuals. As a result of mucinase activity, it 
can cause mild but significant mucosal damage.4,37

Enteropathogenic (EPEC) E. coli, of which four were isolated during 
Studies 2 and 3 (Table 4), primarily affects children and infants, causing 
profuse watery diarrhoea, fever and nausea. It can also cause disease in 
certain animals. Outbreaks in developing countries can be quite severe, 
with reported mortality rates of up to 30%.37 Adult infections are rare, but 
possible if high infective doses are combined with substances that can 
neutralise gastric pH. Certain medical conditions, such as diabetes, can 
also make adults more susceptible to EPEC infections.38

EPEC attachment to the small intestine is a multi-step process which 
starts with initial attachment to epithelial cells and microcolony 
stabilisation through bundle-forming pili (BFP), intimate adherence 
through the production of intimin, and the formation of attaching and 
effacing lesions and ‘pedestal’-like structures.4,37 Intimin production is 
facilitated by the locus of enterocyte effacement pathogenicity island 
which carries the eae gene, and is a prerequisite for EPEC and EHEC 
pathogenicity. BFP is coded for by the E. coli adherence factor plasmid, 
and, although it is considered a virulence contributing factor because 
of its stabilising role during initial microcolony formation, it is not an 
absolute requirement for EPEC pathogenicity.39 Strains that are eae(+) 
and BFP(+) are referred to as typical EPEC (tEPEC), while eae(+) and 
BFP(-) strains are known as atypical EPEC (aEPEC) strains.40 Although 
symptoms of aEPEC are milder, with non-inflammatory diarrhoea and 
no fever or vomiting, it is, however, associated with prolonged diarrhoea 
(>14 days).39 Prolonged diarrhoea for longer than 14 days is clinically 
associated with an increased risk for illness and death.40 Although the 
EPEC strains identified in this study were all eae positive, no screening 
for BFP was done, so the strains could be either tEPEC or aEPEC. 
However, in both instances, the burden of disease would be significant.

Antibiotic resistance profiles and ExPEC virulence genes
The presence of pathogenic E. coli in this river could result in waterborne 
or foodborne diseases. Treatment of these diseases could be further 
complicated if the pathogenic isolates are also resistant to medically 
important antibiotics. The five InPECs presented in Table 4 were 
additionally screened for antibiotic susceptibility to seven clinically 
important antibiotics, as well as for the presence of ExPEC genes. The 
results are presented in Table 5.

The results showed that the InPEC strains could not be positively 
confirmed as ExPEC, as they did not have two or more of the ExPEC 
gene sequences. The EAEC strain (E. coli H45) did carry the ExPEC 
gene sequence iutA, which codes for the aerobactin siderophore that 

contributes to essential ferric iron uptake and transport in different 
iron-deficient environments.41,42 It has been reported that the incidence 
of aerobactin genes correlates with the presence of highly virulent 
pathogenic E. coli strains.42 It should, however, be stated that the 
pathogenic strains were only screened for the most abundant ExPEC 
gene sequences19 and that more than 30 other ExPEC genes have been 
reported.41 It is thus possible that E. coli H45 may be a carrier of other 
ExPEC gene sequences which were not tested for.

The antibiotics tested for in this study all represented different classes 
of antimicrobials: aminoglycosides (Streptomycin), fluoroquinolones 
(Ciprofloxacin), penicillins (Ampicillin), amphenicols (Chloramphenicol), 
cephalosporins (Cefalotin), dihydropholate reductase inhibitors 
(Trimethoprim) and tetracyclines (Tetracycline). Antibiotic resistance 
testing revealed that, although all of the InPEC strains were resistant 
to multiple antibiotics, the four EPEC strains (Table 5) can be referred 
to as multidrug resistant (MDR) strains. This conclusion is based on 
the accepted definition of MDR which refers to the co-resistance that a 
strain can have to three or more classes of antimicrobials.43 This finding 
concurs with previous observations that multiple antibiotic resistances 
are common for EPEC.37

The most abundant resistances were against Ampicillin (5/5) and 
Trimethoprim (4/5), followed by Tetracycline (3/5), Streptomycin (2/5) 
and Chloramphenicol (1/5). Trimethoprim and Ampicillin resistance were 
furthermore observed in the InPEC strains from all three studies, which 
showed that Trimethoprim and Ampicillin resistance persisted among 
bacteria in the river over time. Tetracycline and Streptomycin resistances 
were limited to strains from Study 2, while Chloramphenicol resistance 
was only observed in the isolate from Study 3. Antibiotic resistance can 
either be carried on mobile genetic elements, such as plasmids, which 
could be easily transferred horizontally between different bacteria, or be 
as a result of the environmental selection of a chromosomal mutation.44 
Whether chromosomal or plasmid-based, the results showed that 
antibiotic-resistant E. coli that also carries InPEC virulence genes is 
present in the Plankenburg River.

E. coli strains resistant to Tetracycline, Streptomycin, Chloramphenicol 
and Ampicillin have also been isolated from surface and groundwaters in 
KwaZulu-Natal and the North-West Province.45-47 None of these studies 
tested for Trimethoprim resistance. The widespread occurrence of 
resistance to Tetracycline, Streptomycin, Chloramphenicol and Ampicillin 
is not surprising, as they are ‘older’ antibiotics, some of which have been 
in use since the 1940s. The fact that antibiotics such as Tetracycline 
have also been widely used as growth promoters in animal production, 
could also have contributed to the extent to which resistance has spread 
in the environment.48

The increased antibiotic resistance of Gram-negative bacteria such 
as E. coli is considered a serious global problem, because there is 
no foreseeable development of new antibiotic classes in the next 
10 years.49 This concern has led to the WHO classification of Ampicillin 
and Streptomycin as antimicrobials of critical importance for human 
medicine, while Chloramphenicol, Trimethoprim and Tetracycline are 
considered as highly important antimicrobials.49 The occurrence of 

Table 5: Antibiotic resistance profiles and presence of ExPEC genes in the InPEC strains

Strain Pathotype Source Antibiotic resistance ExPEC genes

E. coli H45 EAEC Study 1 (P-1) Ampicillin; Trimethoprim iutA

E. coli A95 EPEC Study 2 (P-2) Ampicillin; Trimethoprim; Tetracycline –

E. coli A118 EPEC Study 2 (P-2) Ampicillin; Trimethoprim; Tetracycline; Streptomycin –

E. coli A132 EPEC Study 2 (P-2) Ampicillin; Tetracycline; Streptomycin –

E. coli S49a EPEC Study 3 (P-2) Ampicillin; Trimethoprim; Chloramphenicol –

EAEC, enteroaggregative E.coli; EPEC, enteropathogenic E. coli
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E. coli strains that show resistance to these important antibiotics in the 
Plankenburg River is therefore a matter of concern.

The presence of antibiotic substances in the aquatic environment is 
increasing mostly as a result of widespread application in the fields of 
human medical therapy and agriculture. Antibiotic substances are never 
fully metabolised in humans or other animals, which means that small 
amounts are regularly excreted and can enter water streams directly or 
indirectly via faecal pollution, agricultural run-off or through discharge 
from wastewater treatment plants.50,51 The concentrations are usually at 
sub-inhibitory levels, which contribute to the development and spread of 
antibiotic resistance properties among environmental bacteria. If human 
pathogens acquire resistance to antibiotics, a serious situation can arise 
which, at the very least, can result in increased disease treatment costs. 
Antibiotic-resistant pathogens that are resistant to multiple antibiotics 
might, however, also lead to increased morbidity and mortality rates.51

Conclusions
Escherichia coli counts in the Plankenburg River have been found to 
be unacceptably high and this river can thus be classified as a ‘high-
risk’ irrigation water source. Under these conditions, transfer of E. coli 
from the water to produce during irrigation will be highly probable. MDR 
E. coli strains, harbouring intestinal pathogenic gene sequences, were 
isolated from the Plankenburg River on more than one occasion. Three 
of the E. coli strains carrying enteropathogenic sequences also belonged 
to the B23 phylogenetic group, which could indicate human faecal 
contamination of the Plankenburg River. Subsequently, if irrigated fresh 
produce contaminated with MDR pathogens is consumed raw, it might 
act as a direct vehicle for the transmission of disease. Treatment of 
these MDR pathogenic bacterial related diseases will then be negatively 
impacted. It is therefore in the public’s interest to report the existence of 
multiple antibiotic-resistant pathogenic E. coli in the Plankenburg River, 
so that corrective action, specifically in terms of treatment of irrigation 
water prior to irrigation, can be taken as soon as possible.
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