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KwaZulu-Natal coastal erosion events of 2006/2007 
and 2011: A predictive tool?

Severe coastal erosion occurred along the KwaZulu-Natal coastline between mid-May and November 2011. 
Analysis of this erosion event and comparison with previous coastal erosion events in 2006/2007 offered the 
opportunity to extend the understanding of the time and place of coastal erosion strikes. The swells that drove 
the erosion hotspots of the 2011 erosion season were relatively low (significant wave heights were between 
2 m and 4.5 m) but of long duration. Although swell height was important, swell-propagation direction and 
particularly swell duration played a dominant role in driving the 2011 erosion event. Two erosion hotspot types 
were noted: sandy beaches underlain by shallow bedrock and thick sandy beaches. The former are triggered 
by high swells (as in March 2007) and austral winter erosion events (such as in 2006, 2007 and 2011). 
The latter become evident later in the austral winter erosion cycle. Both types were associated with subtidal 
shore-normal channels seaward of megacusps, themselves linked to megarip current heads. This 2011 
coastal erosion event occurred during a year in which the lunar perigee sub-harmonic cycle (a ±4.4-year 
cycle) peaked, a pattern which appears to have recurred on the KwaZulu-Natal coast. If this pattern proves 
true, severe coastal erosion may be expected in 2015. Evidence indicates that coastal erosion is driven by 
the lunar nodal cycle peak but that adjacent lunar perigee sub-harmonic peaks can also cause severe coastal 
erosion. Knowing where and when coastal erosion may occur is vital for coastal managers and planners.

Introduction
The KwaZulu-Natal coastline (Figure 1) is subject to coastal erosion – an ongoing process that has occurred 
throughout the latest Quaternary transgression. The sea level has risen 130 m since the Last Glacial Maximum 
at 18 000 years BP.1,2 Sea-level rise,3,4 increasing storminess5,6 and increasing coastal urbanisation7 will certainly 
contribute to increased future coastal erosion and the increased infrastructural costs thereof. 
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Figure 1:	 Map showing the location of erosion hotspots along the KwaZulu-Natal coast.

Knowledge of where and when erosion will strike is vital to coastal managers.8 Recent work9 has highlighted the 
KwaZulu-Natal coast’s vulnerability to erosion. However, this work did not address the reasons for this vulnerability, 
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nor did it assess the occurrence, future likelihood and prevalence of the 
phenomenon. In this paper, we aim to assess coastal erosion along the 
KwaZulu-Natal coast from these perspectives. 

The KwaZulu-Natal coastline is subject to a net south-to-north 
littoral drift.10-12 The northerly flow dominates but reversals occur 
(see 15–19 July 2011 swell account), especially in summer as a result of 
the greater number of easterly winds and swells. The littoral drift is driven 
by south to southeasterly swells which are generally higher in winter.5,6 
This seasonality drives a net beach rotation13 within the topographically 
bound bays (small bays created between two headlands), resulting in 
beach thinning in the south and thickening in the north during the austral 
winter, a pattern which reverses in the austral summer.14

Along urbanised coastlines, the coast’s natural ability to repair itself 
is compromised by the destabilising effects of built structures and 
the dysfunctional coastal dune cordon (Figures 2 and 3).7 Protracted 
erosion in 2006 and 2007 led to some coastal reaches being artificially 
defended to protect the adjacent infrastructure. Because of net sediment 
losses during this erosion event, this coastal buffer was placed 5–30 m 
shoreward of its pre-2006/2007 position.7,14 This placement has resulted 
in the urbanised coastal reaches being more vulnerable than they were 
prior to 2006.

Recent research14 suggests that strong erosion events have occurred at 
or near the peak of the 18.6-year lunar nodal cycle (LNC) when the moon 
is closest to Earth and spring high tides are unusually high. 
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Figure 2:	 (a) Umdloti, (b) Little Maritzburg Road, (c) Ansteys and (d) 
Umhlanga beaches during a large swell. These locations are 
known erosion hotspots. 
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Figure 3:	 Westbrook Beach rotation on (a) 03 July 2011, (b) 10 July 
2011, (c) 17 July 2011 (during an unusual ENE swell) and (d) 
28 August 2011. 

Austral winter erosion event of 2011
Austral winter erosion along the KwaZulu-Natal coastline is typically 
complete by September, but the 2011 erosion event continued to the end 
of November. Beach webcam imagery15 and fieldwork indicates that the 
onset of erosion can be placed in the late austral autumn – mid-May for 
Amanzimtoti and Ansteys Beach (south of Durban) and early June for 
Umdloti, Umhlanga and Westbrook (north of Durban) (Figure1). 

The highest significant wave heights (Hs) of the 2011 coastal erosion 
peaked at 2.9  m offshore16 and 4.5  m inshore17 on 23 June 2011. 
During the 2011 austral winter the swell remained between 2  m and 
3 m (Hs) for significant periods.16 These swells consistently arose from a 
southeasterly direction, with periods varying from 12 s to 16 s.17 During 
this time, coastal erosion was dominant at the known erosion hotspot 
(EHS) locations and, although the still-water position (level of the sea on 
which waves are superimposed) remained relatively low, sediment loss 
and infrastructure damage was reported. Some EHS coastal defences, 
constructed in the aftermath of the 2006/2007 erosion event, were 
exposed, damaged or breached (Figure 2). These effective swells were 
generated by a series of cold frontal systems moving from west to east, 
passing to the south of KwaZulu-Natal. Several distinct erosive events 
were recorded. 

A swell period which peaked between 17 and 19 July 2011 is of particular 
interest as the swell came from a very unusual direction (ENE: ±65o) 
for that time of year. This swell resulted in a longshore drift reversal 
(north-to-south). Under this reversal many EHS localities underwent 
significant temporary deposition (Figure 3). The storm system which 
formed this swell had all the characteristics of a tropical low pressure 
system. These are summer weather systems expected in December–
March18 and are very unusual in winter. 

Notably, the 2011 austral winter erosion event did not fall on the LNC 
peak but did occur in a year coinciding with the lunar perigee sub-
harmonic (LPS) peak, a ±4.4-year tidal cycle that is also typified by 
unusually high tides. The last LNC and LPS peaks were 2006 and 2007, 
respectively – a period noted for strong coastal erosion.14

The 2011 EHS localities were associated with prominent megarip currents, 
themselves controlled by coastal geomorphology and bathymetry.14 
Megarip currents (identified by large megacusps on the beach) are 
typically associated with deeper offshore-directed subtidal channels 
(to the north of headlands). This situation is caused by the complex build-
up of water caused by wave action, which is then released by an offshore 
directed megarip current flow. These deep channels are used as ski boat 
launch sites. 

Within most topographically bound bays, deposition occurred to the 
south of points and megarip head-cutting erosion to the north. Beach 
rotation is generally seasonal13 but during austral winter 2011 it was 
observed to be the net product of multiple shorter-duration, swell events. 
These beach rotation events were rapid, occurring on the scale of a few 
days, and could reverse just as quickly with a change in swell direction 
(Figure 3). The fact that beach rotation was not universal indicates 
that local factors, such as bathymetry and coastal orientation and 
configuration, must have played a role.

All the 2011 EHS locations underwent severe erosion during the high 
swell of March 20077 (Figure 1; Table 1). The 2011 austral winter 
erosion event was driven by sustained swells. Initially, the pattern 
seemed to follow that of the March 2007 high-swell erosion event. At 
first, thin beaches (1–3 m) overlying shallow bedrock underwent severe 
erosion,6,13 whereas deeper sandy beaches escaped erosion. As the 
season progressed, the wide and deep sandy beach EHSs became 
extensively eroded as a result of continuing megarip current activity. 
From this evidence, two types of EHS are recognised: Type 1 (EHS-1) 
are beaches underlain by shallow bedrock such as Umdloti, Umhlanga 
and Westbrook and Type 2 (EHS-2) are wide, sandy, deep beaches 
such as Amanzimtoti, Submarine Bay, Umkomaas and Trafalgar 
(Figure 1; Table 1).
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Table 1:	 Locality where coastal erosion occurred in 2007, effects 
of erosion in 2011 at the same localities and the type of 
erosion hotspot  

2007 Locality Effects of 2011 erosion event EHS type

Richards Bay No infrastructure damage reports ?

Zinkwasi HWL retreated by up to 20 m ?

Sheffield Beach Low level beach erosion EHS-1

Little PMB Damage to 2007 defence structures EHS-1

Willards Beach Noticeable beach erosion EHS-1

Westbrook Beach Launch site ramp undercut EHS-1

Umdloti Undermining of road repaired and defended 
in 2007 

EHS-1

Umhlanga Rocks Retaining wall built in 2007 failed EHS-1

Ansteys Beach HWL retreated 20 m EHS-1

Amanzimtoti 
(Chain Rocks)

HWL retreated 20–30 m EHS-2

Umkomaas 
(Windham)

HWL retreated markedly EHS-1

Scottburgh No infrastructure damage reports EHS-2

Submarine Bay HWL retreated 20–30 m EHS-2

Sezela No infrastructure damage reports EHS-2

Mtwalume No infrastructure damage reports ?

Port Shepstone No infrastructure damage reports ?

St Michaels No infrastructure damage reports ?

Uvongo HWL retreated 80 m+ EHS-2

Margate HWL retreated 30–40m ?

Port Edward 
(Trafalgar)

HWL retreated markedly EHS-2

EHS, erosion hotspot; HWL, high waterline.

Discussion and conclusions
High swells erode coastal sediment and lower the beach profile19 which 
leads to general linear coastal erosion and infrastructure loss on a scale 
of days.13,14 By contrast, winter erosion acts, via megarip currents, 
over a longer duration. When compounded over an entire season, 
these megarip currents can cause catastrophic erosion at specific EHS 
localities because the megarip current cusp headcuts back into the 
beach and, in extreme cases, into the coastal dune. Although the overall 
patterns of the 2007 and 2011 winter erosion events were similar, the 
coast was better able to withstand the erosion in 2011 than in 2007. In 
2007, the coast had been rendered more susceptible to winter erosion 
by the high swell (Hs=8.5 m)6 that struck 24 h before the March equinox. 
The March 2007 high swell eroded a large amount of coastal sediment 
and conveyed it via a storm-return flow offshore beyond the ability of 
waves to return it.14

The KwaZulu-Natal coastal erosion record goes back to 1937,10-12 but 
is reliant on serendipitous imagery and so the timescale is very coarse. 
Historical research has shown that coastal erosion occurred during 
the last three LNC peaks (Figure 4).14 Subsequent research has also 
shown the occurrence of EHS erosion in 1989 and 1993 – years that 
both coincided with LPS peaks. Although 1989, 1993, 2007 and 2011 
represent only four LPS events, this pattern suggests that there may be 
some control of erosion around these tidal peaks (Figure 4). This finding 
is interesting as theoretical work done elsewhere suggests that the 
KwaZulu-Natal coastline should be dominated by the LPS (±4.4-year) 
tidal cycle.20 
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Figure 4:	 Coastal erosion events since 1949 at known KwaZulu-Natal 
erosion hotspot localities.

Erosion clearly correlates with years in which the LPS and LNC lunar 
tidal cycles peak (although the latter dominates) – times of unusually 
high spring tides (Figure 4). This evidence is empirical and the exact 
causal relationship needs to be better established. Whether the moon is 
influencing coastal erosion directionally through increased tidal current 
action21,22 or indirectly by influencing the weather (and hence the swell 
climate)23-26 has yet to be ascertained.

Geofabric bag defences emplaced after the 2006/2007 erosion event 
largely held in 2011, whereas sand-filled sugar bags (which have no UV 
tolerance) and geofabric sandbag filled gabions failed. Some seawalls 
also failed, e.g. Umhlanga (Figure 1). The 2011 coastal erosion was 
predictable as it struck identified EHSs during a LPS year. 

The 2011 erosion was minor in comparison with that of 2006/2007, 
but serves as a wake-up call to coastal managers. Many of the 
post-2006/2007 coastline defences and repairs failed in 2011. Coastal 
erosion on the KwaZulu-Natal coast appears to be steered by lunar 
aspects (both the LNC and LPS), modulated by megarip currents, swell 
height, swell duration, swell propagation direction and the still-water 
level. At its onset, the 2011 austral winter erosion activated the EHS-1 
localities, a similar pattern to that of the March 2007 high swell, but as 
it progressed it followed the pattern of the 2007 austral winter erosion 
and triggered the EHS-2 localities. However, the 2011 event lacked the 
antecedent high-swell coastal erosion that preceded the 2007 austral 
winter event; consequently, the 2011 event was less destructive. 
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Erosion events, such as those of austral winter 2011, are likely to 
become more severe as a result of the predicted 3.7-mm/year sea-level 
rise,3 coupled with the ongoing destruction of the coastal dune cordon7,14 
and the predicted increase in wave heights.5,6 Analysis of the historical 
record suggests that the next serious round of coastal erosion is to be 
expected in 2015 – when the next LPS peak will occur. On the basis 
of the empirical evidence presented in this paper, we recommend that 
coastal planners take this event into account in their planning. 
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