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Carbon dioxide plays a central role in earth’s atmospheric, ocean and terrestrial systems.1,2 About 40% of the total 
anthropogenic emissions since 1750 have remained in the atmosphere, with the balance being removed by the 
ocean and vegetation sinks.3 Increasing atmospheric CO2 concentrations have been well documented,3 as have 
widespread impacts on human and natural systems, such as warmer surface temperatures, ocean warming and 
decreasing pH, loss of ice mass over the cryosphere, increasing global mean sea level, and alterations in the global 
hydrological cycle.3,4 The impact of increased atmospheric concentrations of CO2 on the biosphere includes shifting 
species extent, seasonal activities, migration patterns and abundances, as well as changes in species interactions. 

Monitoring of atmospheric CO2 and other greenhouse gases (GHGs) has been identified as a priority by international 
agencies, such as the United Nations Framework Convention on Climate Change and government departments that 
are interested in mitigating the effects of climate change. South Africa has made a commitment to a low carbon 
future as part of its role in global climate policy instruments through a national low carbon development strategy.5,6 
At the Conference of the Parties in November 2015 (COP21), high level of agreement by developed and developing 
countries encouraged stakeholders to urgent action to address climate change. The agreement emphasises the 
urgent mitigation pledges with respect to GHG emissions by 2020. As South Africa implements its White Paper on 
Climate Change, to stimulate a shift towards a low carbon economy, it faces a monitoring and evaluation challenge. 
Currently, the South African GHG emission inventory is based on fossil fuel emissions, as part of the National 
Atmospheric Emissions Inventory System, under the National Air Quality Act, 2004 (Act No. 39 of 2004). Briefly, 
emissions are rarely measured directly, but rather based on proxy estimates of activity, extrapolated by an emission 
factor for the specific activity. There is therefore a need to independently assess the effectiveness of emissions 
reductions within the context of natural CO2 fluxes. Understanding the changing driving forces of climate change 
and evaluation of the carbon emission reduction activities requires long-term and high-precision measurements of 
CO2 gas emissions and sinks as well as their evolution. 

Land can act as both a source and a sink for GHGs.7 Currently the baseline GHG emissions from land and agriculture 
are thought to amount to 3.03x1010 kg CO2 eq per year in South Africa. The land sector is responsible for an uptake 
of 2.1x1010 kg CO2 eq per year while agriculture is responsible for a release of 5.06x1010 kg CO2 eq per year.7 The 
GHG emissions for South African industry amounted to ~5.45x1011 kg CO2 eq in 20108,9, with approximately 79% 
from the energy sector – an order of magnitude larger than the emissions from agriculture7.

Under the proposed White Paper policy, South Africa’s GHG peak, plateau and decline trajectory anticipates 
emissions to peak at 6.1x1011 kg CO2 eq between 2020 and 2025, plateau at this range for about 10 years 
and decline to ~4.3x1011 kg CO2 eq by 2050.6 Determining these fluxes accurately will facilitate assessment of 
the proposed commitments to mitigation and adaptation strategies adopted by South Africa. At present there is 
infrastructure deployed in South Africa for the measurement of the concentrations and fluxes of CO2, which include 
observations in the atmosphere, on land and in the ocean. 

Carbon dioxide observations in South Africa
Terresterial observations 
A number of sites for terrestrial CO2 observations are in place (Figure 1). These include: 

•	 A network of cavity ring-down spectroscopy analysers for measurement of CO2, CH4 and H2O concentrations. 
The placement of these instruments was guided by the inverse modelling work of Nickless et al.10 These 
instruments have been used by the City of Cape Town for estimation of the CO2 flux from the city.11,12 
The instrumentation has been set up around the country at the following locations: 

�� The Cape Point Global Atmospheric Watch station: -34.35°, 18.48°; 172 metres above sea level (masl); 
operational since 1991; operated by the South African Weather Service.13-16

�� The Elandsfontein Air Quality Monitoring Station: -26.24°, 29.41°; 1747 masl; operational since 
April 2016; Eskom ambient air quality monitoring station.17,18

�� The Medupi Ambient Air Quality Monitoring Station: -23.74°, 27.54°; 900 masl; operational since 
January 2016.

•	 A network of eddy covariance flux towers with instruments located at the following sites: 

�� Skukuza: -25.02°, 31.49°; 365 masl; savanna site in conservation area; operational since 2000; operated 
by the Council for Scientific and Industrial Research (CSIR).19-21

�� Malopeni: -23.83°, 31.21°; 385 masl; savanna site in conservation area; operational since 2008; 
operated by the CSIR. 

�� Agincourt: -24.82°, 31.21°; 534 masl; savanna in communal area; operational since 2016; operated 
by the CSIR. 

�� Vuwani: -23.14°, 30.43°; 629 masl; savanna site in communal area; operational since 2016; operated 
by the University of Venda. 
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�� Middelburg: -31.52°, 25.01°; Karoo site in heavily grazed 
and lightly grazed agricultural area; operational since 
2015; operated by Grootfontein Agricultural College and 
Stellenbosch University. 

�� Cathedral Peak: -28.9755°, 29.2359°; 1860 masl; operational 
since 2012; operated by the South African Environmental 
Observation Network (SAEON) Grasslands–Forests–Wetlands 
node.

�� Welgegund: -26.56°, 26.93°; 1477 masl; grassland site under 
commercial agriculture; operational since 2010; operated by 
the North-West University.22 

Marine observations
A number of different approaches has been adopted to address the 
needs of understanding and resolving the trends in Southern Ocean CO2. 
One of the key gaps is observational-based estimates because of the 
geographical extent and remoteness of the Southern Ocean.23 This gap 
is being addressed in two main ways. Firstly, by increasing the coverage 
and quality of global data sets through international coordinated efforts 
such as Surface Ocean CO2 Atlas (SOCAT)24 and supplementing these 
data with linear and non-linear empirical models and proxy variables. 
Secondly, by expanding the ship-based approaches with autonomous 
platforms such as floats25 and gliders23,26.

The ongoing data coverage in the Southern Ocean since 1995 has a 
seasonal bias for summer (Figure 2). The Southern Ocean Carbon and 
Climate Observatory’s annual partial pressure CO2 (pCO2) observations 
programme on board the MV SA Agulhas II currently operates in the 
Southern Ocean basin annually. These pCO2 observations seasonally 
characterise the drivers and variability of CO2 fluxes in the Southern 
Ocean south of Africa. Moreover, these observations reduce the 
uncertainty of the mean annual flux of CO2 in the Southern Ocean.27 
Reducing the uncertainty to less than 10% (or 0.1 Pg C/year) of the 
mean net uptake of CO2 is critical to resolving interannual variability and 
trends of CO2 flux in the Southern Ocean.25,28

An integrated carbon observation network which combines the current 
ongoing initiatives of ocean, atmosphere and terrestrial observations 
would provide essential information to decision-makers involved in 

mitigation targets and policy. In South Africa, quantitative measurement 
and monitoring of high-quality (climate-focused) carbon concentrations 
in the terrestrial, ocean and atmosphere domains already exist. 
Integrating these flux measurements across spatial scales and between 
the marine and terrestrial systems is essential. 

Empirical modelling methodologies provide a method to utilise high-
precision measurements of CO2 to estimate CO2 fluxes or to improve prior 
estimates of CO2 fluxes. These methods have been successfully used 
in terrestrial systems including the City of Cape Town11,12, and regional 
and global CO2 emissions inventories29,30. This method relies on high 
accuracy measurements of atmospheric CO2 (or other) concentrations 
to constrain a priori estimates of CO2 fluxes derived from activity and 
emission factor estimates.11,30 

Similarly, within the marine domain, empirical modelling provides an 
interim solution to estimate CO2 fluxes accurately enough to estimate 
inter-annual and seasonal changes, as deterministic ocean models do 
not yet accurately depict the seasonality of CO2. Empirical modelling 
utilises the relationship between in-situ CO2 measurements and remotely 
sensed parameters (temperature, salinity, chlorophyll, etc.). The 
relationship is then applied to remotely sensed data for which there are 
no CO2 measurements, to improve CO2 data coverage. This approach 
has shown some promising potential in the North Atlantic where data 
coverage is more extensive31,32, and has also been extended to the 
Southern Ocean33. Furthermore, the approach has more recently been 
refined by using artificial neural networks to highlight the importance of 
input parameters and self-organising maps, to illustrate the usefulness 
of empirical models as tools to reduce uncertainty of CO2 estimates.34 

The currently available CO2 observation platforms allow the opportunity 
for spatial integration to provide national and metro policy management 
with an independent assessment capability of the effectiveness of 
emissions mitigation measures at local and regional (southern Africa) 
scales. It is necessary to maintain and expand the CO2 observation 
network across ocean, terrestrial and atmospheric platforms in 
Southern  Africa, to link the observations and modelling platforms in 
order to establish an observation-based CO2 inventory for South Africa 
and to develop temporally relevant indicators of the state of the terrestrial, 
atmospheric and ocean carbon systems that are relevant and accessible 
to policymakers and the general public. 

Figure 1:	 Sites of terrestrial CO2 measurements in South Africa including both the flux tower locations and the CO2 measurement sites.
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Figure 2.	 Gridded CO2 observations in the Southern Ocean between 1995 and 2013 from the Surface Ocean CO2 Atlas (SOCAT v3). The annual occupation 
of the seasonal cycle (in months) is shown; white space indicates no data.
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