Online supplementary material to: Pretorius R, Crouse PL, Hattingh CJ. A multiphysics simulation of a fluorine electrolysis cell. S Afr J Sci. 2015;111(7/8), Art. #2014-0082, 5 pages. <u>http://dx.doi.org/10.17159/sajs.2015/20140082</u>

List of symbols

- C_i Concentration of chemical species $i \pmod{m^3}$
- $C_{0,i}$ Initial concentration of species $i \pmod{m^3}$
- C_P Heat capacity at constant pressure $(J \cdot / (kg \cdot K))$
- C_{P0} Heat capacity at constant pressure at $25 \,^{\circ}C(J \cdot (kg \cdot K))$
- d_b Average bubble diameter (m)
- D_i Isotropic diffusion coefficient for chemical species $i (m^2/s)$
- \vec{F} Volume force vector (kg/(m² · s²))
- F Faraday constant $(A \cdot s/mol)$
- g Gravitational acceleration (m/s^2)
- *i* Current density in electrolysis reactor (A/m^2)
- i_n Current density for electrode $n (A/m^2)$
- i_0 Exchange current density (A/m^2)
- k_n Electrode *n* rate constants (m/s^1)
- k_t Thermal conductivity of electrolyte ($W^{\cdot}(m \cdot K)$)
- *n* Stoichiometric factor coefficient (–)
- P Pressure (kPa)
- Q Internal heat source (W/m^3)
- R_i Electrode surface molar flux for species $i \pmod{(m^2 \cdot s^1)}$
- R_g Ideal gas constant i (J · ($K^1 \cdot mol^1$))
- r_i Reaction rate of species *i* in the electrolyte (mol \cdot (m³ \cdot s¹))
- T Temperature of electrolyte (K)
- t Time (s)
- T_0 Initial electrolyte temperature (*K*)
- T_W Temperature of cooling surface s(K)
- \vec{u} Velocity vector (m/s)

List of Greek symbols

- α_i Electron transfer coefficient (-)
- β Thermal expansion coefficient (1/°*C*)
- ε_r Relative permittivity (-)
- Φ Cell electric potential (V)
- $\Phi_{0,i}$ Reference potential of electrode i(V)
- φ_i Volume fraction of phase i(V)
- Φ_{RV} Reversible cell voltage (V)
- η_n Surface overpotential of electrode n (V)
- μ_i Viscosity of fluid phase *i* (*Pa.s*)
- $\mu_{m,i}$ lonic mobility of species $i \ (m^2 \cdot mol/(J \cdot s))$
- ρ_i Density of phase *i* (kg/m^3)
- ρ_0 Electrolyte density at 25 °C (kg/m³)
- σ Electrical conductivity (S'/m)

Electron transfer

The chemical reaction (electrolytic decomposition of the electrolyte into F_2 and H_2) is induced by electric potential as prescribed by Equation 1 (Laplace's equation) which models the primary current distribution and adheres to the assumption of Equation 2⁸:

$$-\nabla d(\sigma \nabla \Phi) = 0$$
 Equation 1
 $\nabla \Phi^2 = 0$ Equation 2

Current density distribution is modelled using Equation 3 (the Butler–Volmer equation) and Equation 49:

 $\mathbf{i} = \mathbf{i}_0 \left[exp\left(\frac{\alpha_A F}{R_a T} \eta_s \right) - exp\left(\frac{\alpha_C F}{R_a T} \eta_s \right) \right]$ Equation 3 $i_0 = F_{\sqrt{k_a k_c C_{HF_2} - C_{HF}}}$ Equation 4

Electrical conductivity was in turn modelled using the empirical relation shown in Equation 5. This equation assumes a linear relationship between electrical conductivity and gas fraction. Low gas fractions result in maximum conductivity, and vice versa.

Heat transfer

 $\sigma = 1 + 5.67 \cdot \varphi_1$ Equation 5

Heat transfer as a result of convection and conduction inside the reactor is modelled using Equation 6³:

Heat generation in turn is modelled using Equation 7³:

 $Q = i \cdot (\Phi - \Phi_{RV})$ Equation 7

Reactant and product species movement is modelled using Equation 8¹¹. This correlation incorporates convection, conduction, ion migration due to electric field and chemical reaction:

$$\frac{\partial C_i}{\partial t} + \nabla \cdot (-D_i \nabla C_i - z_i \mu_{m,i} F C_i \nabla \Phi + C_i \vec{u}) = r_i$$
 Equation 8

Table 1 shows the three species assumed to comprise the system.

 $\rho C_p \frac{\partial T}{\partial t} + \nabla \cdot (-k_t \cdot \nabla T) = Q - \rho C_p \overrightarrow{u} \nabla T$

Table 1: Chemical species assumed to be present during the electrolytic process

Species	Charge number (z _i)		
К	+1	_	
HF	0		
HF ₂	-1		

Mass transfer

Equation 6

The dissociation reactions are given by Equation 9:

$KF \cdot 2HF \rightarrow K^+ + HF + HF_2^-$ Equation 9

Relevant electrode half reactions are given by Equation 10 (anode) and Equation 11 (cathode) as supplied by Groult et al.²:

$$HF_2^- \rightarrow HF + \frac{1}{2}F_2 + e^-$$
 Equation 10

 $2HF + e^- \rightarrow HF_2^- + \frac{1}{2}H_2$

Dilute species flux at the electrodes was further modified to include the effect of bubbles on the electrode surface. This was implemented by coupling the calculated dilute species flux and liquid fraction (through multiplication) at the electrode boundary.

Equation 11

Momentum transfer

Flow induced inside the reactor was modelled by Equation 12, Equation 13 and Equation 14, representing the momentum transport, continuity and laminar bubbly flow equations, respectively. Subscripts 'l' and 'g' denote the liquid and gas phases, respectively^{4,8}:

$$\varphi_l \rho_l \frac{\partial \vec{u}}{\partial t} + \varphi_l \rho_l (\vec{u} \cdot \nabla) \vec{u} = \nabla \cdot \left[-P\vec{I} + \varphi_l \vec{u} (\nabla \vec{u}_l + \nabla \vec{u}_l^T) \right] + \varphi_l \rho_l \vec{g} + \vec{F}$$
 Equation 12

$$abla \cdot \vec{u} = 0$$
 Equation 13

$$\frac{\partial \varphi_g \rho_g}{\partial t} + \nabla (\varphi_g \rho_g \vec{u}_g) = 0$$
 Equation 14

The following assumptions allow for a simplified modelling procedure:

- The gas density is negligible compared to the liquid density.
- The motion of the gas bubbles relative to the liquid is determined by a balance between viscous drag and pressure forces.
- The two phases share the same pressure field.
- Gas volume fraction is less than 0.1.

Starting and boundary conditions

The starting conditions for the reactor are given in Table 2.

Transfer process	Description
Electron transfer	Cell voltage: 0 V
Heat transfer	Reactor temperature: 88 °C
Mass transfer	Reactive species concentration C _{0,i} :2000 mol/m ³
Momentum transfer	Velocity: zero

Table 2: Starting conditions used in the model

Boundary conditions used in the model are given in Table 3; representing electron, heat, mass and momentum transfer boundary conditions, respectively.

Table 3: List of parameters and expressions used during the simulation			
Boundary	Condition		
Anode surface	Gas flux specified. Thermal insulation. Specified current density.		
Cathode surface	No slip for liquid flow. Gas flux specified. Thermal insulation. Specified current density.		
Cooling walls	No slip for liquid. Temperature specified as T_{W} . Electrical insulation.		
Electrolyte level	No electron or heat flow permitted (insulation). Slip condition for liquid flow.		
Other boundaries	Thermal and electrical insulation. Liquid no slip condition.		

Empirical equations used in the modelling procedure are given in Table 4.

Table 4: Modelling equations				
Symbol	Expression			
C_P	$C_P = C_{P0} + 0.00284 \cdot T$			
R_A	$R_A = -rac{i_A}{F}$			
R _C	$R_C = -\frac{2 \cdot i_C}{F}$			
i _A	$\mathbf{i}_{A} = \mathbf{i}_{0} \left[exp\left(\frac{\alpha_{A}F}{R_{g}T}\eta_{s,A}\right) - exp\left(\frac{\alpha_{C}F}{R_{g}T}\eta_{s,A}\right) \right]$			
i _C	$\mathbf{i}_{C} = \mathbf{i}_{0} \left[exp\left(-\frac{\alpha_{A}F}{R_{g}T} \eta_{s,C} \right) - exp\left(-\frac{\alpha_{C}F}{R_{g}T} \eta_{s,C} \right) \right]$			
$\eta_{s,A}$	$\eta_{s,A} = \Phi - \Phi_{0,A}$			
$\eta_{s,C}$	$\eta_{s,C} = -\Phi - \Phi_{0,C}$			
ρ	$\rho = \frac{\rho_0}{e^{(\beta \cdot (T-25^{\circ}\text{C}))}}$			

A list of constants used during modelling is given in Table 5.

Table 5: Model constants						
Symbol	Value	Symbol	Value			
C_{P0}	$10.8 J/(kg \cdot K)$	Er	9			
d_B	1 mm	Φ	12 V			
D_{HF}	$2.8 \times 10^{-5} \text{m}^2/s$	Φ_{RV}	1.9 V			
$D_{HF_2}^-$	$3 \times 10^{-5} \text{m}^2/s$	$\Phi_{0,A}$	2.9 V			
k_t	$1.25 \text{ W}/(\text{m} \cdot K)$	$\Phi_{0,C}$	0 V			
k_A, k_C	10 m/s	μ_l	0.0113 Pa · s			
T_0, T_W	353.15 K	μ_g	0.001 Pa•s			
α_A , α_C	0.5	$ ho_0$	$2000 \cdot \text{kg}/m^3$			
β	$7.11 \times 10^{-4} / ^{\circ}C$	σ	6.67 · S/m			

Table 5: Model constants

References

- 1. Roustan H, Caire JP, Nicolas, F, Pham P. Modelling coupled transfers in an industrial fluorine electrolyser. J Appl Electrochem. 1997;28:237–243.
- 2. Newman JS. Electrochemical systems. New Jersey: Prentice Hall; 1991.
- 3. Çengel YA. Heat and mass transfer. Singapore: McGraw-Hill; 2006.
- Rudge AJ. Production of elemental fluorine by electrolysis. In: Kuhn A, editor. Industrial electrochemical processes. Amsterdam: Elsevier; 1971. p. 1–78.
- 5. Groult H, Lantelme F, Salanne M, Simon C, Belhomme C, Morel B, et al. Role of elemental fluorine in nuclear field. J Fluor Chem. 2007;128:285–295.
- 6. Loth E, Tryggvason Y, Tsuji Y, Elghobashi SE, Clayton A, Crowe CT, et al. Modeling. In: Crowe CT, editor. Multiphase flow handbook. Boca Raton, FL: Taylor & Francis; 2006.