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Leaf area index (LAI) is a critical parameter in determining vegetation status and health. In tropical 
grasslands, reliable determination of LAI, useful in determining above ground biomass, provides a basis 
for rangeland management, conservation and restoration. In this study, interval partial least square 
regression (iPLSR) in forward mode was compared to partial least square regression (PLSR) to estimate 
LAI from in-situ canopy hyperspectral data on a heterogeneous grassland at different periods (onset, mid 
and end) during summer. The performance of the two techniques was determined using the least relative 
root mean square error to the mean (nRMSEP) and the highest coefficients of determination (R2

p) between 
the predicted and the measured LAI. Results show that iPLSR models could explain LAI variation with 
R2

p values ranging from 0.81 to 0.93 and low nRMSEP from 9.39% to 24.71%. The highest accuracies 
for estimates of LAI using iPLSR were at mid- and end of summer (R2

p = 0.93 and nRMSEP = 9.39%; 
R2

p = 0.89 and nRMSEP = 10.50%, respectively). Pooling data sets from the three assessed periods 
yielded the highest prediction error (nRMSEP=24.71%). Results show that iPLSR performed better than 
PLSR, which yielded R2

p and RMSEP values ranging from 0.36 to 0.65 and from 28.44% to 33.47%, 
respectively. Overall, this study demonstrates the value of iPLSR in predicting LAI and therefore provides 
a basis for more accurate mapping and monitoring of canopy characteristics of tropical grasslands. 

Significance:
• The relationship between LAI and canopy reflectance can be used in iPLSR modelling to provide more 

accurate mapping and monitoring of canopy characteristics for land management and conservation.

Introduction
Measurement of spatio-temporal distribution of quantitative variables like leaf area index (LAI) and biomass are 
valuable for assessing the health and productivity of tropical grasslands.1 Several studies (e.g. Prins and Beekman2) 
have associated vegetation characteristics such as LAI and biomass with animal grazing patterns. Therefore, 
quantitative assessment of such characteristics offers great potential for determining grassland conditions, which 
is useful for generating optimal management guidelines for grazing and rangeland conservation and restoration.

LAI has been recognised as a key biophysical parameter for determining vegetation characteristics.3 LAI 
determines vegetation biophysical processes such as photosynthesis, canopy water interception, transpiration, 
radiation extinction, carbon loads and nutrient sequestration.4,5 Consequently, LAI is commonly used as a key input 
for modelling vegetation foliage cover, growth and productivity and effects of disturbances such as drought and 
climate change on vegetation communities.6

Previous studies in which LAI was estimated on tropical grasslands have emphasised their spatial variation.7 
However, LAI is a biophysical parameter that is spatially and temporally dynamic across a landscape. According to 
Shen et al.8, the performance of biophysical process models is highly sensitive to the temporal and spatial variation 
of LAI. For example, Xu and Baldocchi9 note that well-timed data collection on changes in LAI could be used to 
explain more than 84% of the variance in gross primary production – an important input in the carbon cycle of 
an ecosystem. Therefore, analysis of temporal and spatial changes in LAI at the canopy level provides a valuable 
opportunity for modelling biophysical processes. 

Traditionally, direct (e.g. destructive sampling) and indirect (e.g. use of a ceptometer canopy analyser and 
hemispherical canopy photography) methods are used to determine LAI in grasslands.8,10,11 Typically, the direct 
methods consist of manually determining LAI using planimetric or volumetric techniques. Although these 
approaches are simple and reliable, they involve destructive sampling, are labour intensive, costly and time 
consuming.1,12 These factors limit the application of direct methods for estimating LAI, particularly in large spatial 
extents that require frequent monitoring.6 Indirect methods, like the use of a spectrometer, quantify LAI by measuring 
spectral reflectance which is then used as a proxy for LAI. Generally, such indirect methods are quick and can be 
automatically processed, thus allowing their application in a larger sampling area.10

Remotely sensed spectral data present an opportunity to indirectly retrieve LAI in heterogeneous grasslands.1 
Techniques that rely on remotely sensed spectral data are non-destructive, relatively quick and cost-effective, and 
therefore valuable for large spatial and multi-temporal monitoring.8,13,14 The literature shows that canopy hyperspectral 
data, acquired using handheld spectrometers, have been widely adopted to derive LAI in heterogeneous grasslands.15,16 
According to Hansen and Schjoerring16, such data provide hundreds or even thousands of spectral bands with 
information sensitive to specific vegetation variables valuable for modelling. Although Lee et al.17 demonstrated that 
models generated from hyperspectral data predicted LAI better than those from broadband spectral data, the large 
amount of spectral information that characterises hyperspectral data makes derivation of LAI from heterogeneous 
grasslands data challenging.7 Additionally, hyperspectral data sets suffer from multicollinearity that often occurs 
when many adjacent spectral bands present a high degree of redundancy and correlation.18 Tropical grasslands 
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LAI retrieval using canopy reflectance is further complicated by varying 
species composition, phenology and proportions and complex canopy 
architecture. 

A number of studies (e.g. Nguyen and Lee19) that have adopted canopy 
reflectance hyperspectral data to derive LAI have demonstrated the 
superiority of partial least square regression (PLSR) over traditional 
regression techniques. The technique was introduced to solve 
multicollinearity and overfitting problems by reducing variables to fewer 
components.18 The PLSR technique is a full-spectrum method that 
simultaneously uses all available wavebands to create models. Compared 
to other algorithms, PLSR is less restrictive because it can be run on 
data for which the sample size is smaller than predictor variables.20 The 
technique is particularly useful for removing uninformative bands and 
retaining those useful for predicting response variables. Consequently, 
it has become valuable for improving, inter alia, model predictions 
by reducing data collection costs, interpretation complexity and data 
dimensionality.5,21 Moreover, PLSR combines the characteristics of 
popular statistical techniques such as stepwise mutiple regression and 
principal component regession. In several studies, PLSR turned out 
to be more robust than the regression techniques with which it was 
compared.7,22,23 Furthermore, similar performance was found between 
radiative transfer and PLSR models in estimating LAI.24

Although the use of PLSR, a full-spectrum technique, has gained 
popularity in hyperspectral data modelling,18,19,25 studies in fields like 
chemometrics have suggested that interval partial least squares (iPLSR), 
a variant of PLSR, can reduce hyperspectral data into band portions 
valuable for more accurate prediction.26,27 Developed by Norgaard et al.26, 
iPLSR is a graphically oriented technique for local regression modelling 
of spectral data. Unlike PLSR, it visually provides a general overview 
of relevant information in different spectral regions, thereby screening 
out important portions of the electromagnetic spectrum and discarding 
interference from irrelevant portions. Norgaard et al.26, for instance, 
used spectra for beer samples to retrieve original extract concentration 
by comparing iPLSR, PLSR and other algorithms. They found that 
iPLSR improved determination coefficient and root mean square error 
of prediction of full-spectrum PLSR from 0.993 and 0.40% to 0.998 
and 0.17%, respectively. Although this approach offers great promise in 
improving landscape modelling accuracy, no studies have used iPLSR 
on ground-based hyperspectral data collected from heterogeneous 
landscapes such as tropical grasslands. 

To determine the value of specific spectral bands or regions to our 
models, we applied iPLSR to the entire electromagnetic spectrum. 
However, several studies have identified different spectral regions to 
relate to LAI variations. For example, Darvishzadeh et al.7 and Zhao 
et al.28 found that LAI-related bands were between near infrared (NIR) 
and short-wave infrared (SWIR) spectral regions. The same studies 
also noted that bands in the visible region (e.g. 440 nm) were valuable 
in LAI modelling. The relationship between LAI and red-edge bands 
has been established in several studies.18,29,30 Generally, the value of 
a spectral band or region in estimating LAI depends on the vegetation 
status. For instance, at the senescence, the amount of chlorophyll drops, 
thus increasing the radiation of NIR and SWIR spectral bands and their 
contribution in modelling biochemical or biophysical parameters.28 
Consequently, we sought to pursue three objectives: (1) to identify useful 
bands for modelling LAI using iPLSR, (2) to compare heterogeneous 
tropical grasslands LAI estimates using iPLSR and PLSR models based 
on hyperspectral data and (3) to evaluate the robustness of the two 
models in estimating multi-temporal tropical grassland LAI (i.e. onset 
of, mid- and end summer) and pooled reflectance data during summer. 

Materials and Methods
The study area
The study area was located in the Ukulinga Research Farm at the 
University of KwaZulu-Natal in Pietermaritzburg (30°24’S, 29°24’E) 
(Figure 1). The area is characterised by warm to hot summers and mild 
winters which often are accompanied by occasional frost. Mean monthly 
temperature ranges from 13.2 °C to 21.4 °C, with an annual mean of 

17 °C.31,32 The farm receives over 106 days of rain with an annual 
precipitation of about 680 mm. Soils originate from shallow marine shales 
of Lower Permian Ecca Group classified as Westleigh forms. The area is 
under the Southern Tall Grassveld and is predominately herbaceous as 
a result of frequent mowing and long-term burnings.32 Themeda triandra 
Forssk, Heteropogon contortus (L.) P. Beauv. ex Roem. Schult. and 
Tristachya leucothrix Trin. ex Nees dominate the area.33

Field sampling
Data were collected during the southern hemisphere summer (October 
2014 to March 2015). Stratified random sampling with clustering was 
adopted to select sampling sites. The grassland area was first digitised 
from an aerial photograph (Figure 1) and stratified into north, south, 
east and west aspects. To select the plots, 10 x-y coordinates were 
randomly generated from the stratum using the Hawth tool. In total, 
40 plots (30 m x 30 m) were selected and located in the field using a 
GPS (Trimple GEO XT, with an estimated 100-mm accuracy). Two or 
three subplots of 1 m x 1 m were randomly chosen within each plot to 
generate a final sample size of 100 plots. Spectral and LAI data were then 
collected within the subplots at the onset of, mid- and end of summer.

Pietermaritzburg

Pietermaritzburg

Ukulinga Farm

Grassland trial area

Cadestral boundary

0 250 500m

Durban

South Africa  
and  

KwaZulu-Natal
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Figure 1: The Ukulinga Research Farm near the city of Pietermaritzburg 
in the province of KwaZulu-Natal, South Africa.

Data collection
At each sampling point, LAI was acquired with a LAI-2200C Plant Canopy 
Analyzer using the procedure described by Darvishzadeh et al.7 Canopy 
reflectance was acquired using an analytical spectral device (ASD 
FieldSpec® 3 spectrometer, Boulder, CO, USA). The spectral resolution 
of the ASD FieldSpec® 3 spectrometer ranges from 350 nm to 2500 nm 
with 1.4-nm and 2-nm sampling intervals for the ultraviolet to visible 
and NIR region (350–1000 nm) and the SWIR region (1000–2500 nm) 
respectively. To normalise the spectra collected, the radiance of a white 
standard panel coated with barium sulfate and of known reflectivity was 
first recorded. Canopy reflectance measurements were made under 
clear sky between 10:00 and 14:00 local time to minimise atmospheric 
effects. To account for any changes in the atmospheric condition and the 
sun irradiance, reflectance measurements were recorded with frequent 
normalisation using the standard panel.34 In total, 15 replicates of canopy 
reflectance within each subplot were collected and averaged, allowing 
for elimination of measurement noise arising from soil background.7

http://www.sajs.co.za
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Data analysis

Pre-processing of hyperspectral data 
To separate overlapping bands, thereby amplifying fine differences in the 
electromagnetic spectrum, the first-order derivative at three nanometres 
was applied on the resulting mean spectral data.35,36 First-order derivative 
is also known to be useful in minimising atmospheric and background 
noise.14,20 A number of researchers7,37,38 have applied first-order 
derivative on hyperspectral data for LAI estimation. The spectral regions 
of 350–399 nm, 1355–1420 nm, 1810–1940 nm and 2470–2500 nm 
(Figure 2) are known to be noisy and were discarded from the spectra.5,39

Analysis of variance and Brown–Forsythe tests
The combined test of skewness and kurtosis was first employed to 
evaluate the distribution of the collected LAI data. The test of normality is 
a prerequisite to assessing data variability. A perfect normal distribution 
has skewness and kurtosis values equal to zero.40 To assess LAI 
variations between periods within summer, one-way analysis of variance 
(ANOVA) and Brown–Forsythe tests (α=0.05) were implemented. The 
use of the Brown–Forsythe test, in addition to ANOVA, was justified 
by the smaller sample size at the end of summer (n=73) because 
of spectrometer failure. According to Maxwell and Delaney41 and 
Sheskin42, the Brown–Forsythe test is preferred over ANOVA when 
sample sizes are heterogeneous and is less affected by data that are not 
normally distributed.

Partial least squares regression
Partial least squares regression was originally an econometric technique 
created by Herman Wold in the 1960s to construct predictive models 
from highly collinear explanatory variables.25 The principle of PLSR is 
to firstly decompose explanatory variables (X) into a few non-correlated 
latent variables or components using information contained in the 
response variable (Y); then to regress the new components against 
the response variable.23,43 According to Tan and Li44, Wang et al.45 and 
Yeniay and Goktas25, the model that underlies PLSR consists of three 
phases. In the first phase, explanatory (X) and response (Y) variables are 
decomposed based on the expression:

X = TPT + E

Y = UQT + F, Equation 1

where T and U are respective matrices of scores of X and Y; P and Q 
stand for the matrices of loadings; and E and F for errors of X and Y 
matrices. In the second phase, the Y-scores (U) are predicted using the 
X-scores (T) based on the expression:

U = bT + e Equation 2

where b represents the regression coefficient and e the error matric 
of the relationship between Y-scores and X-scores. In the final phase, 
the predicted Y-scores are used to build predictive models of response 
variable using the expression:

Y = bTQ + G Equation 3

where G is the error matrix related to estimating Y.

In the present study, we used the PLS Toolbox (Eigenvector Research Inc.) 
with MATLAB (version R2013b) to build PLSR models. Before running 
PLSR, pre-processed hyperspectral data along with LAI data were 
autoscaled.11 This procedure scales mean-centres of each waveband 
to unit standard deviation.46 The PLSR was then run on data using a 
leave-one-out cross-validation method. The least root mean square error 
(RMSE) and the highest coefficients of determination (R2) between the 
predicted and the measured Y variable were the two criteria used to select 
the best model with optimal number of components. The best model was 
suggested by the software.

Interval partial least squares regression
Interval partial least squares regression (iPLSR) is a variant of PLS 
that locally develops PLS models on equidistant portions of the full 
spectrum.26,27 To predict a Y variable from spectra using iPLSR, the 
spectrum is split into a number of intervals of equal distance. A PLSR 
model is then built on each spectral interval. Thereafter, all the models 
built on the wavebands of different intervals are compared to the full-
spectrum model based on calibration parameters such as root mean 
square error of cross-validation (RMSECV). Finally, the local model 
with the lowest RMSECV is selected.21,47 The iPLSR can operate in two 
modes or variable selection directions: backward and forward mode. In 
forward mode, the algorithm starts without any variable selection and 
then develops the best PLSR model from the interval with the lowest 
RMSECV. This process can be repeated by including more intervals to 
enhance the model. In backward mode, the algorithm starts by selecting 
all variables and then discards the interval with the largest RMSECV.48

In this study, iPLSR in forward mode was used to select best spectral 
intervals. As predictive bands of LAI are known to spread across the 
entire electromagnetic spectrum as mentioned above, the interval size 
was set to a single variable. This approach is recommended when there 
is uniqueness of information in variables.46 After several adjustments, 
the process was repeated 40 times. Therefore, the output local model 
had 40 intervals or bands. The iPLSR in forward mode was implemented 
using the PLS Toolbox. 

Validation
A leave-one-out cross-validation method was implemented to calibrate 
models using 70% of the data and to find the optimal number of 
components. Then, the performance of trained models was validated 
using 30% of the data (independent data set). To assess model 
performance for prediction at the three sampling periods, relative root 
mean square regression to the mean (nRMSEP) and coefficient of 
determination (R2

P) were used.

Data splitting into training and independent test data sets was performed 
using an onion algorithm.43 An onion algorithm was chosen in this study 
to avoid arbitrary data splitting which may cause biased results.7 The 
principle of onion algorithm is to keep outside covariant data plus those 
that are randomly inner spaced.49

Results 
Variation in LAI and spectra data 
The values of skewness (between 0.40 and -0.45) and kurtosis 
(between 0.86 and -0.11) indicate that the LAI of grass species canopy 
in the sampling plots had a normal distribution. Therefore the LAI data 
were suitable for the ANOVA and Brown–Forsythe tests. LAI variation in 
grass species canopy was significant among the three multi-temporal 
periods (p<0.01). Samples in mid-summer had the highest mean 
(3.63 m2/m2) and variability (standard deviation= 1.10 m2/m2). Samples 
at the end of summer had the second highest mean (2.01 m2/m2) and 
lowest variability (standard deviation = 0.705 m2/m2). Samples at the 
beginning of summer had the least mean value of LAI (1.667 m2/m2) in 
grass species canopies, with the second least variability (0.821 m2/m2) 
in LAI.

To assess the change in reflectance at the different sampling periods, 
the mean spectra of all the sampling plots were averaged and upper 
and lower 95% confidence limits were derived. Results show that there 
was a change in averaged reflectance during the sampling periods 
(Figure 2). Visually, averaged reflectance was noticeably different across 
the electromagnetic spectrum. Canopy reflectance at the end, beginning 
and mid-summer presented the highest mean reflectance in the visible, 
NIR and SWIR regions, respectively. Figure 2 shows that first-derivative 
spectra differed in some spectral portions at the different sampling 
periods. The highest values of first-order derivative of reflectance are 
located in the NIR and SWIR region of the electromagnetic spectrum.
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Table 1: R2
cv, root mean square error (RMSE) and the number of com-

po nents of training partial least square regression (PLSR) and 
interval PLSR (iPLSR) models prediction for the three sampling 
periods in summer and the pooled data

Regression algorithm
Number of 

components
R2

cv RMSE

Beginning of summer

PLSR (full-spectrum) 6 0.31 0.74

iPLSR (40 intervals) 6 0.89 0.29

Middle of summer

PLSR (full-spectrum) 4 0.54 0.77

iPLSR (40 intervals) 5 0.90 0.32

End of summer

PLSR (full-spectrum) 5 0.39 0.55

iPLSR (40 intervals) 6 0.90 0.24

Pooled data

PLSR (full-spectrum) 5 0.67 0.75

iPLSR (40 intervals) 6 0.81 0.53

PLSR and iPLSR models
Table 1 presents results of the model performance of PLSR and iPLSR 
for the training data set at each of the sampling periods within summer. 
Based on RMSECV and R2, results show that the iPLSR models perform 
better than the PLSR models. At each period, iPLSR models were able to 
explain more than 85% of LAI variability (88.8% at the beginning, 90.3% 
of mid- and 89.6% at the end of summer) with RMSECV values that vary 
from 0.24 m2/m2 to 0.32 m2/m2. Although iPLSR had a slightly higher 
RMSECV value (0.53 m2/m2) it had a better estimation of LAI variability 
across the entire summer (R2

cv = 0.81). PLSR models on the other hand 
yielded high RMSECV values (0.55–0.77 m2/m2) and poorly explained 
the LAI variation (31.3–67.1%).

The contribution of each waveband in the selected PLSR factors 
is displayed in Figure 3. The most valuable bands for estimating LAI 
were distributed across the electromagnetic spectrum. However, the 
highest peaks for all the periods within summer, including all the periods 
combined, were mostly located in the NIR and SWIR regions.

Using iPLSR models with 40 intervals, Table 2 and Figure 4 present the 
selected bands and their location within the four regions of the electro-
magnetic spectrum, respectively, while Figure 5 provides a per cen tage 
of predictive bands in relation to the regions within the electromagnetic 
spectrum. 
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Figure 2: Mean and respective first-order derivative of canopy spectra of all grass subplots at the (a) beginning of, (b) mid- and (c) end of summer.
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Figure 3: Partial least square regression (PLSR) loadings for (a) beginning of, (b) mid- and (c) end of summer and (d) pooled data. 

Table 2: Selected bands (nm) using interval partial least square regression models with 40 intervals for the three sampling periods in summer and the 
pooled data

Visible Red edge Near infrared Short-wave infrared

Beginning of summer 461, 764 –
793, 1020, 1061, 
1201, 1267

1633, 1640, 1656, 1681, 1708, 1741, 1956, 1997, 2003, 2021, 2071, 
2086, 2097, 2117, 2127, 2140, 2165, 2167, 2201, 2219, 2220, 2221, 
2286, 2291, 2321, 2344, 2347, 2369, 2388, 2398, 2429, 2436, 2439

Mid-summer 413, 442, 443 –
995, 1132, 1134, 
1174, 1240 , 1275

1693, 1944, 1947, 1951, 1959,1969, 1978, 2011, 2042, 2048, 2065, 
2181, 2206, 2207, 2216, 2218, 2219, 2258, 2281, 2290, 2319, 2333, 
2353, 2388, 2390, 2394, 2424, 2427 ,2434, 2437, 2450

End of summer – –
874, 943, 1003, 
1010, 1058, 1059

1427, 1430, 1782, 1783, 1960, 1961, 1981, 1985, 1986, 2012, 2018, 2052, 
2067, 2102, 2114, 2119, 2141, 2152, 2190, 2208, 2250, 2262, 2301, 2321, 
2344, 2364, 2383, 2394, 2396, 2417, 2448, 2455, 2462, 2469

Pooled data 433, 489, 490, 535, 551 732, 752 
957, 961, 968, 
1062, 1183, 1244

1471, 1478, 1585, 1626, 1656, 1672, 1693, 1708, 1733, 1742, 1780, 
2047, 2060, 2075, 2097, 2133, 2136, 2148, 2241, 2259, 2280, 2323, 
2325, 2367, 2372, 2403, 2417
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Figure 5: Summary of predictive bands of leaf area index in different 
spectral regions.

Model validation
Figure 6 shows the performance of PLSR and iPLSR (40 intervals) models 
on the independent test data set. PLSR models of all the periods within 
summer (including all the periods combined) increased the coefficient of 
determination for prediction (R2

p) and slightly decreased the relative root 
mean square error for prediction (nRMSEP). The values of R2

p and nRMSEP, 
respectively, varied from 0.36 to 0.65 and from 28.44% (0.69 m2/m2) to 
33.47% (0.56 m2/m2). However, iPLSR models performed better than the 
full-spectrum PLRS models for all the sampling periods in summer. The 
predictive power of iPLSR models did not change much on the validation 
data set. More than 80% of new data of LAI could be explained by the iPLSR 
models at all periods within summer (including all the periods combined).

Discussion
We sought to determine the performance of two multivariate regression 
models (PLSR and iPLSR) in estimating canopy level LAI on tropical 
grassland during summer. Comparisons were determined using the 
coefficient of determination (R2) and the RMSE. Specifically, we 
examined the possibility of developing a model that can estimate LAI at 
different periods within summer (beginning, mid- and end) and across 
the entire summer period. Use of iPLSR to select the optimal bands for 
predicting LAI was also investigated.

Results showed that the PLSR algorithm run on first-derivative spectra to 
assess LAI variation at different periods did not perform well. The values 
of R2

p and nRMSEP, respectively, ranged from 0.36 to 0.65 and 34.53% 
to 28.44%. Although PLSR is known to reduce the dimensionality of 
data to a few uncorrelated (orthogonal) components, inclusion of all 
the wavebands was not useful in the predictive performance of PLSR 
models – results consistent with Liu50, Chung and Keles51 and Filzmoser 
et al.52 However, when data dimensionality was reduced to useful bands 
using iPLSR, the performance of models (R2 and RMSE) significantly 
improved. Overall, there were very close relationships between measured 
and predicted LAI values, with low values of RMSE and higher values of 
determination coefficients (R2) (Figure 6). Consistent with the findings of 
Zou et al.53, Norgaard et al.26 and Navea et al.27, our findings confirm the 
superiority of iPLSR over full-spectrum PLSR. 

The best predictive performance was derived from canopy reflectance 
at mid- (R2

p = 0.93 and nRMSEP = 9.39%) and end summer (R2
p = 

0.89 and nRMSEP = 10.50%). The models performed the worst at the 
beginning of summer (R2

p = 0.88 and nRMSEP = 17.37%) and for all the 
sampling periods combined (R2

p = 0.81 and nRMSEP = 24.71%). The 
lower early summer prediction in comparison to the two other sampling 
periods can be attributed to higher soil background noise. According 
to Darvishzadeh et al.7, soil background often has a negative effect on 
the predictive power of hyperspectral data when LAI is low. The lower 
performance at the end of summer in comparison to mid-summer might 
also be caused by soil background reflectance emanating from litters. 

Adoption of iPLSR was useful in identifying relevant wavebands for 
predicting LAI. In total, 40 intervals were identified for all the sampling 
periods. The success of iPLSR for band selection in this study may be 
attributed to successful separation of overlapping bands performed by 

the first-derivative technique on the spectra. The spectral regions (NIR 
and SWIR) of bands selected by iPLSR are consistent with the findings 
by Darvishzadeh et al.7, Thenkabail et al.38, Brown et al.54 and Gong et al.55 
Within ±12 nm, the bands chosen (Figure 4) in this study showed a 
consistency with the known bands for estimating LAI. For example, bands 
near 793 nm, 1061 nm, 1062 nm, 1633 nm, 442 nm, 443 nm, 535 nm, 
551 nm, 732 nm and 2190 nm were also identified by Wang et al.37 for 
estimating rice LAI at different growth phases. Furthermore, Gong et al.55 
found that bands centred near 1201 nm, 1240 nm, 1062 nm, 1640 nm, 
2097 nm and 2259 nm were useful for estimating forest LAI.

It is worth noting that the contribution of different spectral regions along 
with their wavebands to LAI estimation depends on a particular period within 
summer (Figure 4). This dependence might be explained by the fact that the 
positions of selected wavebands are sensitive to changes in LAI, as indicated 
by ANOVA and Brown–Forsythe test results. Thus, the positions vary when 
factors like biochemical (e.g. chlorophyll) and biophysical (e.g. canopy 
closure) parameters and background effects change with canopy growth 
phases.37 For example, at the end of summer, as the canopy senesces and 
the amount of chlorophyll declines, NIR and SWIR become more important 
in predicting LAI.28 Furthermore, in the combined period, the selected bands 
can be explained by the fact that they were insensitive to changes in LAI (see 
Table 2). Delegido et al.56 found that vegetation indices combining bands 
at 674 nm and 712 nm could overcome the aforementioned saturation 
problem while Kim et al.57 found similar results with the ratio of 550 nm and 
700 nm, which were insensitive to changes in chlorophyll concentration.

In this study, iPLSR models have proved to outperform full-spectrum 
PLSR models. However, model performance has shown to depend on 
the period within summer, on vegetation and on site conditions. These 
limitations are expected because PLSR and its variants (e.g. iPLSR), 
which are linear regression techniques, empirically relate to LAI and 
spectral reflectance, which makes the models non-transferable when 
environmental conditions of grassland (or vegetation cover in general) 
change.24 Further work should look at comparing iPLSR with other robust 
and flexible methods, such as physically based radiative transfer models, 
particularly for the combined period. Models for the combined period 
used physical laws to explicitly relate biophysical variables and spectral 
variation of canopy reflectance. Consequently, these models are known 
to be more reproducible than linear regression models such as PLSR.58 
Currently, rapid development is being undertaken on physically based 
radiative transfer models for application in the field of remote sensing.59 
Further studies should also compare iPLSR with non-linear machine 
learning (e.g. random forest, support vector machine) techniques as 
they are able to cope with non-linear relationships between biophysical 
variables and canopy reflectance in dense grasslands.60

Conclusions
The following conclusions can be drawn:

• iPLSR can be used to simplify the relationship between LAI and 
canopy reflectance transformed using first-derivative technique 
better than PLSR can. The best iPLSR relationship is at the 
beginning and end of summer.

• By including all the variables, full-spectrum PLSR models yield a 
higher prediction error.

• iPLSR used as a single variable selection algorithm for LAI esti-
mation can generate stable and reliable models with 40 bands. 

• The period within summer, which is associated with vegetation 
growth, determines the selection and accuracy of LAI predictive 
bands.

Results show that appropriate band selection on in-situ hyperspectral 
data using iPLSR can overcome the challenge faced by remotely 
sensed data to accurately estimate LAI in a heterogeneous grassland. 
The findings pave the way to more accurate mapping and monitoring of 
canopy characteristics in a tropical grassland from airborne and space-
borne hyperspectral data. However, the development of a iPLSR model 
for all the periods combined within summer needs further investigation, 
as its prediction error was higher than those for the periods separately.
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