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Accomplishments in wheat rust research in 
South Africa

Rust diseases, although seasonal, have been severe constraints in wheat production in South Africa 
for almost 300 years. Rust research gained momentum with the institution of annual surveys in the 
1980s, followed by race identification, an understanding of rust epidemiology, and eventually a focused 
collaboration amongst pathologists, breeders and geneticists. Diversity in South African populations of 
Puccinia triticina, P. graminis f. sp. tritici and P. striiformis f. sp. tritici has been described and isolates are 
available to accurately phenotype wheat germplasm and study pathogen populations at national, regional 
and global levels. Sources of resistance have been, and still are, methodically analysed and molecular 
marker systems were developed to incorporate, stack and verify complex resistance gene combinations 
in breeding lines and cultivars. Vigilance, capacity, new technologies, collaboration and sustained funding 
are critical for maintaining and improving the current research impetus for future management of these 
important diseases.

Significance:
• Rust diseases threaten wheat crops worldwide, including in South Africa.

• Management of rusts includes regular surveillance, pathogen diversity studies, rigorous screening of 
wheat germplasm, and efficient breeding and selection for resistance.

• Collaboration among plant pathologists, geneticists and breeders has provided momentum in rust 
research and control in South Africa in recent years.

Background
The sowing of small grain cereals in South Africa occurred within 2 months after the United (Dutch) East India 
Company set foot on land in present-day Cape Town in 1652.1,2 Crop failures, in particular due to damage caused 
by heavy rains, wind storms and unadapted cultivars, were common occurrences. Nonetheless, efforts to 
successfully grow wheat continued and systematically included new production areas, different sowing times, 
new cultivars – not only from Europe but also from India, and exports when grain supplies allowed. Varietal 
assessments during the early years provided evidence for the first selection of higher-yielding types in South 
Africa.2 The pioneering wheat cultivars are not well documented, but reference is made of ‘white’ wheat in 1659, 
‘Sarut’ from India in 1673, ‘Roode’ and ‘Grijse Winter’ in 1677, until names based on phenotype (e.g. ‘Bloukoring’, 
‘Kleinkoring’, ‘Baardkoring’, ‘Zwartbaard’, ‘Vroeëbaard’), origin (e.g. ‘Ciciliaans’, ‘Bengaalsch’), or growers (e.g. 
‘Du Toits’, ‘Niewoudts’, ‘Tautes’) became customary.2

No mention is made of rust during the foundational years of cereal production in South Africa but, according to 
Theal3, a critical shortage of wheat in 1727 was ascribed in the previous year to rust – a disease known in South 
Africa only on rye at the time. The regular occurrence of rust led Neethling2 to conclude: ‘There is no doubt that rust, 
owing to the severe damage caused, is the most important factor which caused the extinction and origin of varieties 
in South Africa’. Nhemachena and Kirsten4 gave a detailed account of wheat cultivar development in South Africa, 
Smit et al.5 summarised wheat research between 1983 and 2008, and overviews of wheat rust research in South 
Africa were provided by De Jager6, Lombard7 and Pretorius et al.8 Early milestones were interspecies crosses to 
transfer stem rust resistance genes to bread wheat (Triticum aestivum L.) in 1912 followed by pathotyping isolates 
of Puccinia graminis f. sp. tritici Erikss. & E. Henn. (Pgt) and P. triticina Erikss. (Pt) in the 1920s and 1930s.8 The 
establishment of a centre for dedicated small grains research at Bethlehem in 1976, currently named Agricultural 
Research Council – Small Grain (ARC-SG), resulted in appropriate training in rust methodologies, surveillance, race 
analysis and germplasm evaluation. These initiatives were expanded with the formation of a rust laboratory at the 
University of the Free State in 1989.

In recent decades, notable events and initiatives in South African wheat rust research include annual surveys8, 
Sr24 virulence9, the appearance of stripe rust (caused by P. striiformis Westend. f. sp. tritici, Pst)10, Ug99 stem 
rust studies11-15, the mapping of quantitative resistance loci16,17, genetic characterisation of Puccinia isolates18-20, 
comprehensive phenotyping of wheat germplasm, and establishment of a marker service laboratory with a 
particular focus on rust resistance genes (https://www.cengen.co.za).

The objective of this review is to provide a summary of recent accomplishments in wheat rust research in 
South Africa.

Rust surveillance and phenotypic analysis
Surveillance and race typing are routinely conducted by the ARC-SG to determine rust distribution, impact and 
pathogenicity in the major wheat-producing areas of South Africa. Recent reports of similarities in races between 
southern African countries have also emphasised the importance of regional sampling.21-23 

Handling obligate rust fungi in controlled experiments such as race typing or host plant screening requires 
specific infrastructure. In addition to facilities for plant growth, inoculation and incubation, equipment for collection 
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and application of small amounts of urediniospores is essential. Because 
these specialised items are not commercially available, Pretorius et al.24 
developed an additive manufacturing process to assemble spore 
collectors and atomisers through 3D printing. Using these devices, 
traditional race analysis is done by infecting seedlings of a predetermined 
(differential) set of wheat host lines with a rust isolate. An appropriate 
experimental set-up and experience in achieving accurate seedling 
infection types are essential for reliable phenotyping. Examples of 
infection types are shown in Figure 1. 

Figure 1: Seedling (top, left to right: wheat leaf rust, stem rust and stripe 
rust) and adult plant phenotypes commonly encountered for 
leaf rust (second from top), stem rust (third from top) and 
stripe rust (bottom).

Based on the pathogenicity of an isolate on entries in the differential set, a 
race (pathotype) name is allocated. Apart from an alpha-numerical code 
to name leaf and stem rust races in South Africa8, the North American 
system of nomenclature25,26 is used to place races in an international 
context. The standard South African differential set for determining 
seedling infection types to Pt isolates contains 20 entries.27 Except for 

Thew (Lr20) and Agent (Lr24), all Lr genes occur in a Thatcher wheat 
background. New races are further characterised on an additional set 
containing 23 Lr genes.27 Infection types on the lines RL6011 (Lr12), 
CT263 (Lr13), RL6044 (Lr22a), RL6058 (Lr34), RL6082 (Lr35) and 
Thatcher control (Lr22b) are determined on flag leaves of adult plants. 

No new Pt races were detected between 1988 and 2008 in South 
Africa.8,28 This situation changed with the report of race 3SA145 
(CCPS North American race code) in 2009, followed by races 3SA146 
(MCDS, 2010), 3SA147 (FBPT, 2010), 3SA115 (CBPS, 2012), 3SA10 
(CFPS, 2016), 3SA38 (CDPS, 2016) and 3SA248 (CFPS, 2016).27-

30 The frequency of Pt races with virulence to Lr3, Lr12, Lr13, Lr15, 
Lr26 and Lr37 is high and varied between 79% and 98% during recent 
surveys.27 The Pt population was dominated for many years by race 
3SA133 (PDRS) which initially was common on winter wheat in the Free 
State. This changed significantly with the appearance of races 3SA145, 
3SA146 and 3SA115 which accounted for >80% of isolates typed 
during the 2012–2016 surveys.27 The more recently described races 
3SA38 and 3SA10 are increasing in prevalence and comprised more 
than 50% of the isolates typed from the 2018 growing season.31 Pt race 
MCDS was common in Zimbabwe and Zambia with FBPT and SCDS 
detected in Zimbabwe and Malawi.23 

Twenty differential wheat lines are used for stem rust pathotyping. 
Although the resistance genes are similar to the proposal of Jin et al.26, 
Acme (Sr9g), Renown (Sr17) and Trident (Sr38) have replaced CnSr9g, 
Combination VII and VPM1, respectively. Additional differentials include 
Barleta Benvenuto (Sr8b), the triticales Coorong (Sr27), Kiewiet (SrKw) 
and Satu (SrSatu), and either LcSrWst-2Wst (Sr9h) or Matlabas (Sr9h).32 
New races are further characterised on an extended set of tester lines.33 
Although differential lines grown in the field can provide an indication 
of prevailing Pgt races, Boshoff et al.34 showed that certain resistance 
genes are not well expressed in adult plants whereas other lines contain 
resistance in addition to that observed in seedling assays.

The most significant change in the Pgt population since 2005 was 
the regular appearance of new races in the Ug99 lineage. African race 
Ug99, named after the country of first detection (Uganda) and year of 
description (1999)11, was the first race with virulence for the widely used 
Sr31 resistance gene. Its broad virulence and subsequent specialisation 
in 13 pathotypes have raised serious concerns about sustained wheat 
production in many regions of the world.15 Stem rust race 2SA106 
(TTKSP North American race code) detected in 2007, 2SA107 (PTKST, 
2009), 2SA88+ (TTKSF+, 2010) and 2SA42 (PTKSK, 2017) all show 
phenotypic similarities to race 2SA88 (TTKSF, 2000), which was the first 
stem rust race in the Ug99 lineage detected in South Africa.12,13,18,21,32,35 
These races are phenotypically characterised by differences in virulence 
for Sr9h, Sr21, Sr24 and Sr31.13,32 Sr24 and Sr31 have been reported 
to occur in South African wheat germplasm36 and virulence was not 
unexpected. Likewise, the virulence adaptation of TTKSF+ was recently 
confirmed by the endorsement of Sr9h in the wheat cultivar Matlabas.37 
Despite being less virulent compared to the more recently detected 
Ug99 races, TTKSF remains the dominant variant.8,31,32,38 Stem rust 
races TTKSF (2009), TTKSF+ (2010) and PTKST (2010) were also 
identified in samples collected in Zimbabwe and PTKST was confirmed 
in Mozambique.15,21 

Seedling infection types produced on the World and European differential 
sets39,40, followed by an A+ or A- suffix to describe virulence or avirulence 
for the YrA gene in Avocet R41, are used for Pst race designations in 
South Africa. Near-isogenic lines with Avocet S as the recurrent parent 
are used as additional tester lines for race characterisation and in field 
plots.42 Following the detection of Pst race 6E16A- in 199610, proposed 
to be a foreign introduction from Central or Western Asia either by wind 
or human intervention43,44, there is strong evidence that adaptation to 
the host genes Yr25 (race 6E22A-, cultivar Hugenoot, 1998) and YrA 
(6E22A+, PAN 3195, 2005) resulted from selection pressure10,19. 
The Pst population has remained relatively stable since the detection 
of race 6E22A+ on winter wheat in the eastern Free State in 200519 
with 6E22A+ persisting as the most dominant race, comprising 58% of 
isolates in 201831. 
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The outbreak of stripe rust on irrigated spring wheat in 2018 represented 
the first report of the disease in Zimbabwe.45 Showing virulence to Yr3a, 
Yr4a, Yr9 and Yr27, race 30E142A+ was distinctly more virulent on 
South African wheat cultivars than 6E22A+ and poses a potential threat 
to the local industry. However, it is not yet known if Pst will successfully 
establish in Zimbabwe and, as anticipated, migrate to South Africa.

It has been suggested that wheat cultivated at a higher elevation in 
Lesotho during summer serves as a source of Pst inoculum for winter-
grown crops in South Africa.8 Although not customary, some hectares 
may also be sown to wheat in the Free State during summer. The impact 
of these formal off-season productions on the epidemiology of the rusts 
has, however, not been studied in detail. Volunteer wheat has generally 
been assumed to provide a green bridge for the survival of these 
biotrophic pathogens between seasons.

Genetic analysis of Puccinia isolates
Analysis of Pt, Pgt and Pst with microsatellite markers has contributed 
to explaining genetic diversity within the three populations. In the 
absence of functional alternate hosts for wheat rust pathogens in South 
Africa, wind dispersal, human activities, mutation and possibly somatic 
recombination are considered as drivers of variation. The South African 
Pgt population consists of two highly diverse genetic lineages.18 In the 
absence of viable historical samples in South Africa, the close genetic 
similarity of members of the non-Ug99 genetic lineage with Australian 
standard races 21-0 collected in 1954, and 326 and 194 collected in 
1969, respectively, suggested that this lineage represents the original 
South African population.46 Included in this lineage are races that are 
specific for both wheat and triticale. The acquisition of virulence within 
this group appears to be the result of step-wise mutations.32,33 On a global 
scale, this lineage grouped closest with Pgt samples from Pakistan, 
Czech Republic47,48 and Australia due to the proposed movement of 
urediniospores on high-altitude westerly winds46. 

The Ug99 lineage on the other hand, first detected in South Africa in 2000 
with the description of TTKSF12, has expanded into five variants13,14,21,35. 
In contrast to the non-Ug99 lineage, all five South African variants and 
the original TTKSK11 shared more than 85% genetic similarity and fall 
within the bigger Ug99 race group from east Africa15. In a recent study, 
Li et al.48 provided genomic evidence of somatic hybridisation in Pgt, 
shedding light on the origin of Ug99 through the exchange of nuclei 
between standard race 21 and an unknown race. This is an important 
discovery to understand the formation of new diversity in the absence of 
sexual recombination. 

The current South African Pt population consists of two primary genetic 
lineages20, but at least five were evident according to Pt isolates collected 
during the previous century49. Three of these appear to be extinct while 
only one lineage is expanding.27,28,30 Similar to Pgt, these new races 
probably represent exotic introductions as races with similar phenotypes 
and genotypes were found in countries to the north of South Africa.23 
Globally, the South African Pt races grouped significantly with isolates 
from the Middle East, Pakistan and New Zealand.50 

Based on microsatellite analysis, the four Pst races described in South 
Africa represent a single, clonal lineage.19 As opposed to these races, 
the recently identified Pst race in Zimbabwe was genetically very similar 
to two Kenyan isolates45, indicating a southerly expansion of stripe rust 
diversity in Africa. 

Due to the unique ability of markers to distinguish genotypes independently 
of their associated phenotypes, genetic screening of field isolates can 
detect variants before a new phenotype becomes evident. While Pt races 
3SA38, 3SA10 and 3SA248 were first detected as phenotypic variants 
in 201627, their unique genotypes were already abundant in field isolates 
collected in 201549. These markers also indicated that within each 
phenotype, significant genetic variation was present, making genetic 
markers an effective supplementary tool to race phenotyping.

Host resistance
Resistance phenotypes in wheat are typically growth stage mediated. All-
stage resistance (ASR), conferred by major genes, is clearly expressed 

throughout the lifespan of the plant whereas adult plant resistance 
(APR), often polygenic and partial in manifestation, becomes effective 
at more mature growth stages.51 Phenotypes commonly encountered on 
adult plants are shown in Figure 1. As some APR genes are considered 
durable, this resistance type is frequently preferred in breeding and 
selection. Wheat cultivars carrying the pleiotropic race non-specific APR 
genes Sr2/Yr30, Lr34/Yr18/Sr57, Lr46/Yr29/Sr58 and Lr67/Yr46/Sr55 
have maintained moderate levels of rust resistance under epidemic field 
trial conditions in South Africa and might not provide adequate protection 
when deployed singly under high disease pressure. Soko et al.52 recorded 
grain yield losses due to stem rust of between 10.1% and 19.5% for APR 
cultivars as opposed to a 6.4% loss in an ASR line. Previously, Pretorius 
et al.8 mentioned losses as high as 65% for susceptible wheat cultivars 
infected with stripe rust and a 56% yield gain was obtained when leaf 
rust was controlled by fungicide application on a susceptible cultivar. 
Breeders are therefore encouraged to either combine APR sources or 
stack them with ASR genes, the latter especially in areas prone to early-
season infection.

The damage potential of wheat rusts is a reality, and it remains 
important to verify the resistance status of local germplasm and embark 
on appropriate breeding and selection programmes. As part of risk 
assessment and compilation of production guidelines, all commercially 
recommended wheat cultivars in South Africa, as well as leading breeding 
lines, are tested annually against a panel of rust races. These tests 
comprise seedling assays for ASR and field tests under high inoculum 
pressure in carefully managed rust nurseries. The University of the Free 
State has implemented rust nurseries with great success at the research 
facilities of Corteva AgriscienceTM at Greytown in KwaZulu-Natal since 
the early 1990s. The Greytown environment is highly conducive to the 
vigorous development of both spring and winter wheat types as well as 
rust development. In a typical year, stripe rust would be first to establish 
during the cooler months of August and September, followed by leaf rust 
in October and finally stem rust, which peaks at the end of the season. 

Stem rust assessments for local germplasm are summarised in Figure 2. 
Only cultivars with seedling infection types <2 (0 to 4 scale)53, and a 
coefficient of infection54 <20, were considered to carry true ASR. Some 
cultivars regarded as resistant as seedlings showed an intermediate 
stem rust reaction in the field and were thus not classified as displaying 
true ASR. Inoculum loads in the Greytown field nursery are extremely 
high and not all ASR genes provide complete rust protection under 
such conditions. In most cases it is assumed that these cultivars will 
be acceptable in commercial fields where inoculum pressure is lower. 
The opposite was also observed where some cultivars were classified 
as intermediate in the seedling stage but stem rust resistant in the field. 
The effect of using race PTKST in the field from 2011 onwards is clear 
from the initial decrease in resistance before a gradual improvement 
in resistant entries as breeders adapted their selection and breeding 
strategies. Collectively such information, also for leaf and stripe rust, 
adds to an understanding of disease risk and management at production 
level. To support field data, protocols for accelerated and reliable 
greenhouse assays have been developed for stripe rust16,55,56, leaf rust57 
and stem rust58. 

Genetic studies of host resistance provide information on the monogenic 
or polygenic nature of genes involved, their identity and chromosome 
location, association with known genes or quantitative trait loci (QTL), and 
molecular markers for tracking the resistance. Together this knowledge 
contributes to assumptions of durability and targeted attempts to achieve 
long-lasting resistance. Ramburan et al.16 were the first to map rust 
resistance in a South African wheat cultivar. They identified three major 
stripe rust resistance loci in the spring wheat cultivar Kariega and paved 
the way for fine mapping and marker development for QYr.sgi-2B.1 and 
QYr.sgi-4A.1, and confirmation of the pleiotropic resistance gene Lr34/
Yr18/Sr57.57,59 In a similar approach, the durable stripe rust resistance 
of the European wheat cultivar Cappelle Desprez was mapped17 with 
subsequent identification of the major effect QTL QYr.ufs-2A along with 
three QTL of smaller effect, QYr.ufs-2D, QYr.ufs-5B and QYr.ufs-6D. Using 
histological techniques, Maree et al.60,61 investigated fungal behaviour 
in lines containing different combinations of the stripe rust resistance 
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QTL characterised in Kariega and Cappelle Desprez, respectively. These 
studies confirmed the value of gene stacking and careful selection of 
lines with the best ability to mitigate fungal invasion. 

Figure 2: The frequency of South African wheat varieties expressing a 
low seedling response, adult plant resistance (APR) and true 
all-stage resistance (ASR) to stem rust over 8 years. In 2009 
and 2010, entries were tested with Puccinia graminis f. sp. 
tritici pathotype UVPgt59 (TTKSP), and since 2011 with the 
more virulent UVPgt60 (PTKST) pathotype.

Prins et al.62 assessed stem rust response in an African wheat collection 
and identified several marker-trait associations in a genome-wide study. 
Two lines with exceptional APR were identified and biparental mapping 
populations developed. Marker-trait associations on chromosomes 6AS 
and 3BS and the Lr34/Yr18/Sr57 resistance locus were confirmed, along 
with stem rust resistance QTL not detected in the association study, one 
of which was the significant QTL QSr.ufs-4D. This emphasises the value 
of applying multiple approaches to unravel host resistance, particularly 
in cases where marker coverage in certain chromosomal areas is too 
low to detect QTL. 

The availability of Pgt races with virulence attributes appropriate for 
targeting certain sources of resistance has contributed to several studies. 
These projects addressed phenotyping and genetics of resistance to Ug99 
races63-66, resistance characterisation of triticale67 and lines with genes 
transferred from Aegilops sharonensis68 and Thinopyrum ponticum69,70. 
Furthermore, Pretorius et al.71 demonstrated the application of remote 
sensing and the normalised difference vegetation index in reliably 
phenotyping wheat stripe rust response in the field.

Breeding and selection
Marker-assisted selection (MAS) is widely accepted as a key strategy 
to pyramid resistance genes into wheat genotypes, in particular, genes 
that do not exhibit easily distinguishable phenotypes.72 In South Africa, 
large-scale MAS was not implemented by breeding companies in the 
early 2000s8, although it was routinely used to select for several traits in 
countries such as Australia, Mexico, USA, the UK and India72. In 2011, 
a proposal by CenGen (Pty) Ltd. titled ‘Establishment of a molecular 
marker service laboratory for routine application of marker-assisted 
selection in South African wheat breeding programs’ (WCT/W/2009/02), 
was approved for funding by the Winter Cereal Trust. The capital expense 
of establishing a MAS laboratory and routine maintenance justified a 
central facility at CenGen for all wheat breeding programmes. The project 
is based on (1) purity testing of donor lines and confirmation of the target 
trait, (2) planning of breeding schemes and crosses to transfer the new 
trait, and (3) tracking the trait in subsequent filial generations.

South African seed companies use different strategies to breed for 
rust resistance, dependent on their approach, resources and location. 
Yet there is a collective focus on pyramiding rust resistance genes, in 
particular those that confer durable APR, to uphold the international 
drive of gene stewardship. Sensako (Pty) Ltd., a private breeding 
company with headquarters in Bethlehem (Free State, South Africa), 
follows a strategy in which they combine target genes/QTL in doubled 
haploid donor lines. This is followed by a top cross with their elite lines 

or commercial cultivars and from the F1-generation doubled haploid 
lines are developed to integrate the genes/QTL into better adapted 
backgrounds. This approach has proven to be successful in pyramiding 
rust resistance genes/QTL (Figure 3). They have managed to develop a 
line containing multiple genes for resistance to all three rust pathogens, 
which is now used as a key donor line to incorporate complex resistance 
into existing cultivars. 

Number of lines containing at least 
2 target genes/QTL

Figure 3: Complement of rust resistances incorporated in the Sensako 
doubled haploid marker-assisted selection programme. 
Numbers in brackets indicate the maximum number of 
genes/quantitative trait loci (QTL) screened for in the specific 
combination. For each combination, lines containing at least 
two target genes/QTL were selected for field evaluation in 
2019. For all combinations, at least one line was recovered 
containing all targets.

The South African wheat breeding programme of Corteva AgriscienceTM 
follows a more traditional approach of gradually incorporating multiple 
genes/QTL into their breeding lines. Gene enrichment is done at the F2-
generation, and the presence of the target genes is confirmed in the 
F5-generation after three cycles of selection for agronomic traits. Pure 
lines containing the target genes are then either used to generate new 
resistance gene combinations or, if within the tolerance levels set 
for the different milling and baking quality criteria, are considered for 
commercial release. This programme has been successful in combining 
APR genes for stem, stripe and leaf rust resistance into elite breeding 
material that performs similarly to current commercial cultivars in yield 
trials (Table 1). 

Table 1: Yield performance of selected marker-assisted selection (MAS) 
lines of Corteva AgriscienceTM compared to commercial cultivars

Entry Relative yield (%)a Genes incorporated through MAS

Cultivar 01 102 Confidentialb

Cultivar 02 97 Confidential

Cultivar 03 94 Confidential

Cultivar 04 100 Confidential

Cultivar 05 106 Confidential

Cultivar 06 106 Confidential

MAS Line 01 99 Fhb1 Qfhs.ndsu-3BS; FHB Qfs.ifa-5A

MAS Line 02 96 Fhb1 Qfhs.ndsu-3BS; FHB Qfs.ifa-5A

MAS Line 03 98 Fhb1 Qfhs.ndsu-3BS; FHB Qfs.ifa-5A

MAS Line 04 99 Fhb1 Qfhs.ndsu-3BS; FHB Qfs.ifa-5A

MAS Line 05 96 Fhb1 Qfhs.ndsu-3BS; FHB Qfs.ifa-5A

MAS Line 06 102 Fhb1 Qfhs.ndsu-3BS; FHB Qfs.ifa-5A

MAS Line 07 95 Sr2/Yr30; Lr34/Yr18/Sr57/Pm38

aYields measured in tons/ha are expressed relative to Cultivar 04 which was taken as 
the benchmark (100%).
bDeveloped through traditional breeding without MAS.
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The MAS programme commenced in 2011 with the capacity to screen 
for 19 genes/QTL, of which 13 were related to rust resistance. These 
targets included the popular APR genes Lr34/Yr18/Sr57/Pm38 (Pm is 
the notation for powdery mildew resistance genes) and Sr2/Yr30, the 
leaf rust resistance gene Lr1973 as well as QTL previously identified for 
stripe rust resistance in the cultivars Kariega16 and Cappelle-Desprez17. 
Since its inception, the programme has grown to include 63 genes/
QTL of which 29 are associated with rust resistance (Figure 4). These 
are obtained by breeders through international collaboration with 
organisations such as CIMMYT, or are newly identified sources from 
ongoing local research projects.62 

Figure 4: Targets of rust resistance genes screened for in the marker-
assisted selection programme at CenGen.

Molecular markers for target genes/QTL are obtained from the public 
domain and research articles, or from in-house mapping projects by 
CenGen and collaborators. These include simple sequence repeat (SSR), 
sequence-tagged site (STS), cleaved amplified polymorphic site (CAPS) 
and single nucleotide polymorphism (SNP) markers. Since 2013, the 
implementation and upgrade of KASPTM SNPLlineTM instruments (LGC, 
UK) at CenGen greatly enhanced high-throughput capacity. The number 
of data points (calculated as the number of samples x number of markers 
tested per sample) that are generated annually continues to increase 
(Figure 5) despite a decrease in industry funding.

Figure 5: Number of data points generated since inception of the marker-
assisted selection programme.

Notwithstanding the success of the implementation and application of 
the MAS programme for single locus traits such as rust resistance, 
the status of MAS in South Africa trails behind that of international 
programmes, which are exploring an integrated genomics-assisted 
breeding approach.74 In 2010, crop geneticists started to investigate 
genomic selection in wheat to select for complex, multi-locus traits.75 
By 2012, reports of the value of genomic selection using genotyping-

by-sequencing in wheat were published, creating yet another avenue 
for genomics-assisted breeding (Figure 6).76 The challenge remains for 
South African breeders and geneticists to follow international trends in 
genomics-assisted breeding and sensibly implement selection strategies 
for multi-locus traits. 

MAS, marker-assisted selection; GS, genomic selection; GBS, genotyping by 
sequencing

Figure 6: Timeline of MAS in South Africa (bottom) compared to 
international programmes (top). 

Conclusions
The relatively frequent introduction of new rust races into South Africa 
strongly suggests the possibility of further incursions. Stem rust and 
stripe rust, in particular, are extremely damaging diseases and the 
description of highly virulent and aggressive Pst and Pgt races in other 
wheat regions77,78 emphasises continued vigilance. The introduction of 
such races could impact severely on cultivar response with a consequent 
increase in production risk and cost. The survival of rust on off-season 
wheat crops and ancillary hosts such as wild rye (Secale strictum 
subsp. africanum) in the Roggeveld Mountains of the southwestern 
Karoo79, requires further attention. Although samples collected from wild 
rye revealed Pst, the stem and leaf rust forms were those of cultivated 
rye and not bread wheat.79 Wild rye is, however, moderately susceptible 
to Pgt and could serve as an inoculum source. The occurrence of both 
Pt and Pgt on a summer wheat crop in the eastern Free State in January 
2020 (WHP Boshoff, unpublished) is of concern and supports the 
expansion of surveys to this period. Scientists should thus continue with 
surveillance, studies of pathogen variability, characterisation of cultivars, 
genetic analyses, resistance discovery, focused breeding and selection, 
and communication of research outcomes to producers. Overarching 
activities include international, regional and national collaboration; 
capacity building and training; embracing of new technologies; 
resistance gene stewardship; and sourcing sustained funding.
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