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Commercial forests are expanding globally, with great potential to absorb carbon and mitigate climate change. 
However, whereas the role of natural forests in carbon sequestration has been widely investigated, there is 
a paucity in the literature on the role of commercial forests in carbon assimilation. Hence, understanding 
the role of commercial forests in carbon storage is essential for quantifying local, regional or global carbon 
balances, which is valuable for climate change mitigation. Soil carbon is known to be the largest pool within 
any forest landscape, and is controlled by a wide range of physical and climatic factors. However, the 
relationship between soil organic carbon (SOC) and topo-climatic variables controlling its distribution within 
commercial forests is still poorly understood. Due to the limitations encountered in traditional systems of 
SOC determination, particularly at large spatial extents, geospatial techniques have recently emerged as 
a viable alternative for mapping soil properties. Therefore, this study sought to map SOC stocks variability 
within the commercial forest landscape, using landscape topo-climatic variables. A total of 81 soil samples 
was analysed for SOC concentrations and 31 topographic and climatic variables were used as predictors 
to SOC variability. To reduce multicollinearity, these variables were reduced to 11 using stepwise backward 
elimination and the maximum entropy (Maxent) algorithm was used for regression analysis to determine 
the relationship between SOC and the selected topo-climatic variables. Good accuracies were obtained 
for both training (area under the curve = 0.906) and test (area under the curve = 0.885) data sets, and 
demonstrate the effectiveness of selected topo-climatic variables and the Maxent algorithm in predicting 
SOC stocks. This study provides a framework for monitoring the status of soil carbon in commercial forest 
compartments and provides a viable approach for local, national or regional carbon accounting – valuable 
for climate change mitigation.

Significance:
• Rainfall and temperature, as well as topographic variables (such as slope, elevation and topographic 

wetness index) are effective in mapping SOC distribution. 

• The model developed is useful in predicting SOC occurrence and yielded an effective framework for 
continuous monitoring and assessment of SOC. 

• The method developed in this study is cost-effective and suggests the use of other readily available 
climatic and topographic information for the prediction of SOC under commercial forestry in South Africa 
and indeed globally. 

• Results from this study are important to achieve the national carbon accounting objective and are 
also valuable to forest managers, ecologists and relevant stakeholders in understanding the spatial 
distribution of SOC.

Introduction
Commercial forests represent a large carbon pool with the potential to reduce net greenhouse gas emissions.1The world’s 
commercial forests increased by over 105 million ha between 1990 and 2015, while natural forests decreased by 
234 million ha.2 Federici et al.3 notes that carbon held by commercial forests was comparable to that of natural forests 
(i.e. 1.08 vs. 1.44 gigatonne CO2 per year) during this period. Recent projections have also shown that commercial 
forest plantations will increase by 20 to 50% by the year 2030.4,5 Hence, commercial forests are increasingly 
becoming valuable environmental assets. Specifically, commercial forests could be used to reduce harvest pressure 
on remnant natural forests, restore degraded ecosystems, conserve natural resources and design climate change 
mitigation policies.4

Carbon in commercial forest ecosystems is stored in five different pools: above- and below-ground live tree biomass, 
dead wood, litter and soils.6 These pools are dynamic and controlled by a wide range of environmental factors such 
as climate, topography, forest type, moisture, temperature, soil type and land use.7 Within these pools, soil is the 
largest carbon reservoir and constitutes 50–80% of total carbon stocks.6 As indicated by Liu et al.8, the global soil 
organic carbon (SOC) stock has been evaluated to be about 1500 Pg carbon in the upper 100-cm soil layer, which is 
approximately double the measure of carbon in the atmosphere and thrice the amount stored in terrestrial vegetation.9 
However, whereas the above-ground biomass carbon pools have been widely investigated, the spatial variability of 
SOC within forest landscapes is still poorly understood.10 Hence, an in-depth understanding of SOC and its variability 
in relation to topographical and environmental factors is crucial in quantifying regional and global carbon balances and 
in examining the responses and feedbacks of the terrestrial ecosystem to climate change.8 Furthermore, knowledge 
of SOC variability is useful for developing suitable management strategies to improve carbon assimilation11 and to 
achieve total annual national and global carbon accounting objectives as well as Intergovernmental Panel on Climate 
Change and Kyoto Protocol objectives.

https://doi.org/10.17159/sajs.2020/6339
www.sajs.co.za
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7483-5615
mailto:odebsconstant@gmail.com
https://doi.org/10.17159/sajs.2020/6339
https://doi.org/10.17159/sajs.2020/6339
https://orcid.org/0000-0002-3227-4343
https://orcid.org/0000-0001-6053-4408
https://www.sajs.co.za/associationsmemberships
https://crossmark.crossref.org/dialog/?doi=10.17159/sajs.2020/6339&domain=pdf&date_stamp=2020-03-26


2 Volume 116| Number 3/4 
March/April 2020

Research Article
https://doi.org/10.17159/sajs.2020/6339

Environmental variables are critical to the spatial distribution of SOC within 
a forest landscape.12 Some of these environmental factors occur naturally 
while others are human-induced.13 Variables such as topography (e.g. 
elevation, slope and aspect) and climate (e.g. temperature and rainfall) 
significantly influence SOC distribution within a forest landscape.14 
Studies have also shown that climate and topography exert a strong 
influence on the amount of vegetation density within a forest landscape, 
which in turn determines SOC distribution.15,16 However, Chaplot et al.11 
and Liu et al.8 note that large-scale investigations on the connection 
between SOC distribution and the influence of multiple topo-climatic 
variables at a regional and global level are not sufficient. Explicitly 
significant relationships and models that link topo-climatic variables with 
SOC processes at large spatial extents are still very necessary.17

Traditionally, SOC has been quantified through, among others, field 
surveys and wet soil analysis.18 Although these strategies are highly 
accurate, they are difficult to conduct over large areas, expensive, time-
consuming and labour-intensive, and may lead to the generation of toxic 
waste such as chromate oxidation, which requires careful and proper 
disposal.19 Geospatial techniques, on the other hand, offer more practical 
and economical means of predicting and quantifying soil parameters at 
local, regional and even global scales.8,20 

Recently, the adoption of spatial techniques in SOC studies has attracted 
significant attention8,14,21,22, particularly because spatially continuous 
topographic metrics that affect SOC distribution (e.g. slope, aspect, 
elevation, curvatures, catchment area) can now be easily generated 
from digital elevation models (DEMs) and satellite imagery.14 Climatic 
variables such as rainfall and temperature can also be derived from 
WorldClim database (global climate layers) at a spatial resolution of 
about 1 km2.23 The use of DEMs derived from satellite missions such 
as Light Detection and Ranging (LiDAR) and Shuttle Radar Topography 
Mission (SRTM) for terrain analysis has become particularly popular 
due to their relatively high resolutions.24 Hence, the development of 
models with SRTM and LiDAR-derived topographic metrics in concert 
with selected bioclimatic variables could benefit studies characterised 
by limited observations and can be used to produce continuous SOC 
distribution.21 Additionally, remotely sensed derived models (e.g. DEMs, 
Landsat and Sentinel sensors) are useful in determining regional and 
global land conditions, impacts and efficacy of land management and 
better at characterising forest landscapes.14 Therefore, the objective of 
this study was to explore the use of remotely sensed SRTM DEM derived 
topographic metrics and other bioclimatic variables in the prediction of 
SOC stocks under commercial forestry in KwaZulu-Natal, South Africa.

Materials and methods
Study site
Commercial forest plantations in South Africa cover approximately 
1.4 million hectares, representing approximately 1.1% of the country’s 
landmass.6,25 South African commercial forest plantations are mostly 
found in the eastern part of the country, stretching from the Western 
Cape through the Eastern Cape, to the KwaZulu-Natal, Mpumalanga and 
Limpopo Provinces.6,25,26 South Africa’s commercial forest plantations 
are of great economic and environmental value. Commercial forestry 
contributes about 1.27% to South Africa’s gross domestic product, 
provides direct and indirect employment to about half a million people, 
supplies South African forest and fibre needs of approximately 17 million 
air dry tons annually, and sequestrates about 4.1 million tons of CO2 
per year.6,27 The country’s forest plantations are predominantly pine 
(49.8%), eucalyptus (42.7%) and wattle (7.1%) species.25 

This study was conducted across commercial forest plantations in KwaZulu-
Natal Province – a region located along the east coast of South Africa (Figure 
1). The Province is an important agricultural and forestry production area 
and is characterised by different forest species. The dominant commercial 
forest species in the region are Eucalyptus (hardwood) and Pinus 
(softwood) species, which cover approximately 371 034 and 115 922 
ha, respectively.25 The area experiences sub-tropical climatic conditions, 
with the main rainfall from October all through to March. The mean annual 
temperature of the study region is approximately 21.7 °C while the mean 
annual rainfall ranges from 700 mm to 1500 mm; thus conditions are 
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favourable for commercial forestry farming.20,28 The topography of the area 
is generally characterised by undulating plains and the altitude rises from 
800 m to 1400 m above mean sea level. The zone is underlain by geological 
formations including granite, arenite, basalt, tillite, shale, sandstones and 
mudstones, which result in clay to pure sandy soils.19 

Figure 1:  Commercial plantations located within KwaZulu-Natal Province, 
South Africa.

Field data collection and analysis
SOC analysis and quantification is an important part of forest resource 
management.6 The procedure of soil sample collection in the field should 
be typical of the area being sampled because the utilisation of the obtained 
results from the laboratory analysis relies on the sampling accuracy.29,30 
Commercial forest sites are categorised into broad regions of site quality 
(in reference to productivity), i.e. poor, medium and good 26, hence soil 
samples must be taken to represent each identified site quality in the field. 
In this study, field data were collected during the rainy summer season 
(January and March 2013) – a period characterised by high above-ground 
biomass productivity. A stratified random sampling method was adopted, 
in which the area was divided into three different strata (i.e. low, medium 
and high productivity) based on prior knowledge of the commercial forest 
stands. The purpose of using a stratified random sample is to get a more 
representative sample of all the regions of commercial forest site qualities. 
A Hawth’s Analysis tool in ArcGIS version 10.4.1 was used to generate 
random sample plots on a commercial forest cover map across all site 
qualities. These sample plots were allotted to the three various strata of 
homogeneous vegetation according to the stratified random sampling 
strategy and then uploaded into a handheld GPS (TRIMBLE GEO-7X) 
which was used to navigate to the field sites. Once the sample plots were 
located on the sites, soil was dug at each sample points to a depth of 
30 cm using a soil auger, which is the recommended depth in spatial SOC 
inventories.10,29,31 In total, 81 accessible soil samples were collected and 
transported to the laboratory where they were processed and analysed. 
SOC concentration was determined in the laboratory using the Walkley–
Black32 dichromate oxidation method.

Environmental variables

Topographic metrics
Previous studies have identified topographic variables as critical drivers to 
SOC distribution.14,21 According to Li et al.14, spatial topographic variables 
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are categorised into three main groups: local, non-local and combined 
topographical variables. Local topographical variables examine the 
surface geometry at a point on the land surface such as slope, elevation 
and curvatures while non-local attributes portray relative locations of 
selected points, such as relief, catchment area, openness and flow 
accumulation. Combined attributes are an integration of both the local and 
non-local topographic variables such as slope length factor, topographic 
wetness index (TWI) and stream power index.14 In this study, 29 different 
topographical variables (Table 1) that cut across the three classes (i.e. 
local, no-local and combined) were selected. These variables were derived 
from a 30-m resolution DEM created from SRTM data in SAGA GIS (2.3.2) 
and ArcGIS 10.4 software.

Table 1:  Topo-climatic variables used in predicting the occurrence of 
soil organic carbon

S/n Variable Description Unit

1
Topographic wetness index 
(TWI) 

Steady state wetness index –

2 Elevation (DEM) Ground height m

3 Slope Steepness of the ground radian

4 Aspect Slope direction radian

5 Mass balance index (MBI) Mass balance index m

6 Normalised height
Relative height and slope 
position

m

7 Standardised height
Relative height and 
slope position

m

8 Direct insolation Potential incoming insolation kw/m2

9 Diffuse insolation Solar radiation kw/m2

10 Visible sky Lightening and sky view factor kw/m2

11 Sky view factor Visibility kw/m2

12 Negative openness
Drainage features, soil 
water content

–

13 Positive openness 
Drainage features, soil 
water content

–

14 LS Factor
Slope length factor effect 
on erosion 

–

15 Catchment area Run-off velocity and volume m2

16 Catchment height Elevation above ground m

17
Terrain ruggedness index 
(TRI)

Quantifies topographic 
heterogeneity

–

18 Plan curvature Horizontal (contour) curvature degrees/m

19 Profile curvature Vertical rate of change of slope degrees/m

20 Longitudinal curvature Morphometric features degrees/m

21 Cross-sectional curvature Morphometric features degrees/m

22 Minimum curvature Lowest curvature degrees/m

23 Maximum curvature Highest curvature degrees/m

24 General curvature
Horizontal and vertical 
curvature

degrees/m

25 Valley depth Relative height m

26
Terrain surface texture 
(TST)

Terrain texture of the surface –

27
Topographic position index 
(TPI)

Location higher or lower 
than the average of the 
surroundings

–

28 Wind effect Effect of wind on the surface m/s

29 Convergence index
Shows structure of relief as a 
set of convergent (channels) 
and divergent (ridges) areas

m

30 Temperature (mean annual) Temperature °C

31 Rainfall (mean annual) Rainfall mm

Bioclimatic data
Bioclimatic data sets including rainfall and temperature are critical 
determinants of SOC.13,23 In this study, mean temperature and rainfall 

bioclimatic variables were used in concert with topographic variables 
to predict SOC occurrence. The bioclimatic variables were obtained 
from the 1-km2 30 arc-seconds spatial resolution of the WorldClim 
archives (http://www.worldclim.org/) of the global climate conditions. 
The WorldClim climatic data sets are long-term (30-year) mean annual 
measurements (containing grids including rainfall and temperature as 
well as other climatic layers summaries such as the wettest, driest, 
coldest and hottest quarters and months of the year. The derived 
temperature (Bio01) and rainfall (Bio12) bioclimatic layers used in this 
study were resampled in order to match the SRTM-derived DEM spatial 
resolution (i.e. from 1 km2 to 30 m).

Statistical analysis
To determine the relationship between SOC and the derived environmental 
variables, SOC within the commercial forest stands was predicted using the 
maximum entropy (Maxent) regression algorithm software (version 3.3.3).33 

Maximum entropy model
The maximum entropy model (Maxent) is a machine-learning algorithm 
proposed by Phillips et al.33 Maxent models the probability of species 
presence based on environmental constraints and estimates the 
likelihood distribution with the maximum entropy, i.e. the most spread 
out distribution. Typically, Maxent produces an estimate of a probability 
of occurrence that ranges from 0 to 1, with 1 being the highest and 
0 the lowest. It is a concise mathematical definition, and therefore can 
be adjusted to analyse data with efficient deterministic algorithms that are 
certain to give optimal probability distribution. Maxent performs efficiently, 
even with small sample sizes, is resistant to errors in occurrence data, and 
applies the presence-only data sets to estimate the suitability of habitat 
or the likelihood of target occurrence.34 At the point where absence data 
exist for the species, a conditional model can be used to enable presence/
absence modelling.33 Maxent uses background/pseudo-absence and 
presence points that evaluate the environmental space for model testing. 
Environmental variables (continuous and categorical) and species-
presence data are used to run the model and the influence of each variable 
can be determined from the jackknife tool in Maxent.33 

In SOC modelling, the Maxent model begins with equal distribution and 
performs a number of repetitions based on the most important predictor 
variable until no further improvements in the spatial estimation of SOC 
are made.35 The Maxent model aims to identify the maximum likelihood 
variability of SOC occurrences within the commercial forest stands in 
the study area.36 The most uniform spread of the SOC occurrences is 
consequently identified by the model and selected from among many 
possible distributions.37 

Predictor variables selection
One common limitation with regression is the issue of multicollinearity, 
which occurs when two or more predictor variables are highly correlated. 
Hence, it is often advisable to use the best and fewest number of 
predictor variables useful in building a model.38 Stepwise regression was 
adopted to solve any possible multicollinearity and to select the best and 
fewest predictive variables for the Maxent model. Stepwise regression 
identifies the statistical importance of a subset of predictors through 
forward selection, backward elimination or a combination of both.39 
In this study, the stepwise backward elimination method was conducted 
using the ‘stepAIC’ function in the ‘MASS’ package of R statistic software 
3.5.1 to select the best predictor variables which were then used for the 
Maxent final model. Backward elimination works by removing predictor 
variables (n=31) that are not significant to the model until the ideal 
number of predictor variables is obtained. The ideal number of variables 
was selected after the backward elimination process. These selected 
variables were then used to predict SOC using Maxent (version 3.3.3).

Model calibration, evaluation and validation
Settings are an integral part of building any model in order to get the 
best results. The SOC data (n=81) used in this study were partitioned 
into training (70%) and test (30%) data sets.28 The training data (n=54) 
were used in the model building while the test data (n=23) were used 
for model validation as proposed by Phillips et al.35 The default Maxent 
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settings were used to run the model. Prior to obtaining final results, visual 
inspection of the response curve and the difference between test and 
training area under the curve (AUC) values of the model were assessed 
to determine overfitting. The default regularisation was adopted as there 
was no overfitting detected. For the probabilistic model output, the 
10-percentile train occurrence logistics limit command in Maxent was 
utilised to generate a SOC variability map. This threshold makes certain 
that 90% of the occurrence data have been predicted as present and that 
the omission error does not surpass 10%.40 

Evaluation and validation are critical steps in any model building process. 
In this study, we used the random test percentage settings in Maxent, i.e. 
70% of the data set was used to train and 30% to test the performance 
of the model. The receiver operating characteristic (ROC) curve was 
used to evaluate and validate the model. The ROC curve is a method 
that describes the performance level of probabilistic and deterministic 
detection of forecast systems.36 It shows the likelihood that presence 
(sensitivity) is correctly ordered by the classifier (in our case predictors) 
as compared to the absence (specificity) of SOC. A two-dimensional 
space is used to generate the ROC curve by plotting the sensitivity as 
Y and the specificity as X. Generally, models with high accuracy have 
an AUC value close or equal to 1, whereas a value equal or less than 
0.5 shows a model that performs no better than random.33 Previous 
studies have broadly and successfully demonstrated the application of 
the ROC curve to quantitatively evaluate and validate the effectiveness of 
probability modelling.14,21,36

Results
Predictor variables selection 
Table 2 shows the results of the stepwise backward elimination 
method conducted to remove redundant and highly correlated predictor 
variables. The procedure to select the best predictor variables was done 
using the ‘stepAIC’ function in the ‘MASS’ package of the R statistic 
software (version 3.5.1). The Akaike information criterion (AIC) acts like 
an examiner of the relative quality of models for a given set of data by 
assigning a value to the model (in this case 5.61), while the stepwise 
backward elimination method eliminates predictor variables that are 
less significant at each stage of the model until the lowest AIC value 
is attained (in this case -15.85). The general rule is that the lower the 
AIC value, the better the model. As shown in the table, 11 out of the 
31 predictor variables used produced the lowest AIC value of -15.85 
after the elimination procedure. Table 2 additionally shows the AIC value 
attached to each of the eleven selected variables, indicating the degree 
to which the lowest AIC value (-15.85) will increase should any of the 
variables be removed. Hence these selected variables are regarded 
as the best subset of predictors to be used in the prediction of SOC 
variability using the Maxent algorithm.

Table 2:  Change in the Akaike information criterion (AIC) value with 
removal of each variable

S/N Selected predictor variable AIC = -15.8546

1 Longitudinal curvature -15.7907

2 Aspect -15.6924

3 Direct insolation -14.6213

4 Digital elevation model (DEM) -14.5480

5 Positive openness -13.7504

6 Catchment area -13.5806

7 Profile curvature -13.3244

8 Topographic wetness index (TWI) -10.5943

9 Rainfall (mean annual)  -7.1520

10 Slope  -5.9165

11 Temperature (mean annual)  8.6211
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Table 3:  Contribution (%) of each variable in predicting the occurrence 
of soil organic carbon

Variable Contribution (%)

Rainfall (mean annual) 30.2

Temperature (mean annual) 22.9

Slope 16.1

Digital elevation model (DEM) 11.6

Topographic wetness index (TWI) 8.9

Direct insolation 3.1

Catchment area 2.9

Positive openness 1.8

Aspect 1.1

Profile curvature 0.8

Longitudinal curvature 0.6

Maxent model 

Analysis of Maxent model omission/commission and ROC
The omission/commission and the ROC analysis is useful in examining 
the performance of the Maxent model. The omission/commission rate 
is calculated on both the training and test data sets. The general rule 
of Maxent is that a good model will produce omission rates that are in 
close proximity with the predicted omission due to the definition of the 
cumulative threshold. The predicted omission rate is demonstrated by a 
straight black line on the cumulative threshold result output of the Maxent 
model. As shown in Figure 2a, the omission on test data sets (turquoise 
line) is in close proximity with the predicted omission rate (black line) 
from the Maxent distribution, which signifies a good Maxent model for 
SOC occurrence.

Figure 2b shows the model evaluation for predicting SOC occurrence using 
the ROC of the randomly selected training and test data sets. The AUC 
ranges between 0 and 1. A good model will be closer or equal to 1 while 
a model with an AUC less than or equal to 0.5 signifies a poor model and 
was no better than random. As shown in Figure 2b, the Maxent model 
accomplished a high accuracy, giving AUC values of 0.906 and 0.885 
for training and test data sets, respectively, and thus indicating that the 
developed model performed better than a random model (p<0.005).

Predictor variables contribution
A major strength of the Maxent algorithm is that it permits the assessment 
of individual predictor variables in order of their influence in the model. 
Table 3 shows the estimated percentage contribution of each predictor 
variable to the Maxent model. The increase in regularised gain is added 
to the contribution of the corresponding variable or subtracted from it in 
order to determine the estimates in each iteration of the training algorithm. 
The higher the percentage contribution of any of the variables, the higher 
its impact in predicting the SOC occurrence. The percentage contribution 
table generated by the Maxent model shows that ‘rainfall (mean annual)’ 
with a percentage contribution of 30.2% had the highest predictive 
contribution and was the most influential in predicting SOC occurrence. 
Also, variables such as temperature (22.9%), slope (16.1%), elevation 
(11.6%), TWI (8.9%) and direct insolation (3.1%) were contributors to 
SOC occurrence and accounted for over 60% of the total SOC occurrence. 
Predictor variables such as aspect, profile and longitudinal curvature had 
little influence on the Maxent model.

Figure 3 shows the jackknife test results; the jackknife test is used to 
assess each predictor variable contribution in order of importance to the 
Maxent model. The turquoise bars indicate the overall model accuracy 
when each of the predictor variables is excluded from the model, 
while the blue bars show the individual performance and accuracy of 
predictors when used in isolation. The red bars depict the overall gain of 
the model when all the variables are used together. As shown in Figure 3, 
‘rainfall (mean annual)’ is the environmental predictor variable that has 
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the highest gain when utilised in isolation and, as a result, appears to 
have the most valuable information independent of any other variable. 
The environmental variable that most reduced the Maxent model overall 
gain when omitted was ‘temperature (mean annual)’, which as a result 
appears to have the bulk of information that is absent in other variables. 
Variables such as slope, DEM and TWI also had an impact on the Maxent 
model gain as there was a significant decrease in the final model gain 
(red bar) when they were excluded. Other variables such as aspect, 
catchment area, curvatures, direct insolation and positive openness, 
had little or no significant contribution to the final model and hence are 
regarded as unimportant in predicting SOC occurrence in this study.

Figure 3:  The jackknife of variable importance in modelling the spatial 
distribution of soil organic carbon.

Map generation of SOC distribution 
The Maxent model generated a map that shows the spatial distribution of 
SOC occurrence within the study area. Figure 4 shows the likely occurrence 
of SOC based on the field observation points using topographic metrics 
and bioclimatic data as predictor variables. Areas with darker colours 
indicate better-predicted conditions of SOC occurrence while areas with 
lighter colours indicate moderate or low predicted conditions for SOC 
occurrence. A general assessment of the resultant SOC distribution 
map shows that the possible occurrence of SOC within the study region 
is relatively high in the southern and central plantations as compared to 
plantations located at the northernmost and the far eastern regions of 
the Province.

Figure 4:  Map showing the spatial distribution of soil organic carbon 
occurrence produced by the Maxent model.

Discussion
The global expansion of commercial forestry and its potential to 
sequestrate carbon is increasingly becoming important in climate 
change mitigation.6 Hence, there is a growing interest in commercial 
forest management practices to further enhance the ability to sequestrate 
carbon because of the carbon assimilation efficiency of commercial 
forests.41 Although commercial forest soils sequestrate and store more 
carbon than other carbon pools, their role in carbon sequestration 
remains largely unexplored.6,12,41 Therefore, we sought to estimate SOC 

a

b

Figure 2:  (a) Maxent test and training data sets omission analysis, as well as the predicted region for SOC occurrence. (b) Receiver operating characteristic 
(ROC) for training and test data sets using the area under the curve (AUC). 

https://doi.org/10.17159/sajs.2020/6339


6 Volume 116| Number 3/4 
March/April 2020

Research Article
https://doi.org/10.17159/sajs.2020/6339

within commercial forestry by utilising a range of environmental variables 
that include topographic metrics and bioclimatic variables in a Maxent 
environment. Results in this study show that environmental variables 
such as topography and climate can be used to effectively model SOC 
spatial variability in a Maxent environment (AUC 0.885). The Maxent 
model’s percentage contribution and jackknife results showed that 5 of 
the 11 predictor variables contributed significantly to the accuracy of the 
Maxent model, and hence could be used to determine SOC occurrence, 
distribution and variability in commercial forestry. These variables in 
order of importance were: rainfall, temperature, slope, elevation and TWI. 

Rainfall, which contributed 30.2% to the Maxent model, was the most 
significant determinant of SOC occurrence in the study area. Forest stands 
with higher SOC occurrence are characterised by higher mean annual 
rainfall. This finding is consistent with that of Meier and Leuschner42 who 
observed a substantial reduction (25%) in the SOC pool in forests stands 
that received less than 600 mm rainfall annually compared with stands that 
received more than 900 mm rainfall annually. Other studies, such as those 
of Jobbágy and Jackson43, Bhandari and Bam7, Chen et al.2, Ramifehiarivo 
et al.13, Hewins et al.23 and Soucémarianadin et al.12, also noted that mean 
annual rainfall within a forest landscape strongly influences the amount 
of SOC. The relationship between rainfall and SOC occurrence can be 
attributed to the influences of rainfall on soil moisture and hydrological 
processes such as surface run-off and groundwater infiltration.44 
Zhou et al.45 and O’Brien et al.46 noted that soil moisture determines SOC 
accumulation as it affects the vegetation density and decomposition. 
Furthermore, rainfall influences the presence of decomposers.47 

The mean annual temperature also significantly influenced the prediction 
of SOC occurrence as it contributed 22.9% in the Maxent model. 
Forest stands characterised by warmer temperatures accelerate SOC 
mineralisation, compared with stands with lower temperatures.48 A similar 
finding was reported by Wang et al.49 who observed that soil samples 
incubated at different temperatures (15 °C and 75 °C) indicated higher 
SOC mineralisation with increasing incubation temperature. Previous 
investigations13,23 have also reported temperature to be strongly linked 
with SOC, as it can promote plant productivity, which in turn promotes 
the presence of SOC. Furthermore, the influence of temperature 
as one of the major drivers of SOC can also be attributed to its direct 
relationship with rainfall, because rainfall may influence soil moisture, 
and by extension the surface temperature, by controlling the partitioning 
between sensible and latent heat fluxes.50 In addition, the amount of rainfall 
within a forest landscape can also be influenced by temperature because 
higher temperatures signify more water vapour in the atmosphere, thus 
increasing the chances of heavy downpours.51

Slope (16.1%), elevation (11.9%) and topographic wetness index (8.9%) 
also showed influence on SOC. Areas with relatively steep slopes – 
such as the northernmost and the far eastern parts of the study area 
– had lower SOC occurrence than areas with relatively gentle slopes,
such as the southernmost and central parts of the commercial forest
areas. This finding can be attributed to higher erosion rates, which are
commonly observed in areas of steeper slope as opposed to areas with
less steep or gentle slopes. Erosion transports soil properties such as
SOC from the upland to low-lying areas.52 Previous studies by Li et al.14,
Fissore et al.21, Young et al.52 and García-Ruiz53, among others, all noted
slope as a strong determinant of SOC distribution. Elevation was also a
significant influence on SOC occurrence in commercial forestry. Low
likelihood SOC occurrence was predicted for areas with higher altitude
(>1300 m) while high probabilities were predicted for low lying areas
(<1300 m). These findings are consistent with another study54 in which it
was noted that with increasing altitude, the amount of soil and vegetation
became less abundant, which was also reflected in the amount of SOC.
The variability of SOC due to elevation can be attributed to the fact that
low-lying areas favour vegetation growth due to optimal soil development
conditions that may include erosion of nutrient-rich topsoil from higher
grounds that are deposited in low-lying areas. Additionally, most low-
lying areas are characterised by higher soil moisture content, nutrients
and deeper depth as opposed to higher grounds characterised by extreme 
environmental conditions, hindering vegetation growth due to limited soil
microorganisms.55 Furthermore, the influence of elevation on microclimate 

could also be the reason for SOC occurrence in our study as altitude 
influences temperature, wind flows and soil moisture peculiar to a region, 
which in turn impacts the amount of vegetation and by extension SOC. 

Although TWI contributed less than 10% in the Maxent model, it can 
still be regarded as an important driver of SOC occurrence due to its 
influence on the overall gains shown in the jackknife results (Figure 3). 
TWI determines soil moisture distribution along slopes14, hence areas 
with higher TWI (soil moisture) indicate higher SOC density than areas 
with low TWI. Previous studies56-58 have also reported the significance of 
TWI in SOC distribution by observing a strong correlation between TWI 
and soil organic matter. For instance, Li et al.14 identified TWI as the most 
significant topographic predictor variable in SOC variability. 

Results indicated relatively little impact of longitudinal and profile 
curvatures, catchment area, aspect, direct insolation and positive 
openness to SOC variability. This finding is in contrast to other 
investigations that demonstrated their importance to SOC formation 
and distribution.14 One possible reason for the significance of these 
environmental factors in other studies could be due to landscape 
variability in relation to our study area.21,22,39 For instance, curvatures are 
generally more sensitive to places of higher relief than relatively moderate 
landscape and have been broadly used to depict flow acceleration.14 As a 
result, curvature plays a significant role in the variability patterns of SOC 
in regions of higher landscapes.

The present study showed that the utility of Maxent based on key 
topographic and bioclimatic variables provides a useful and effective 
methodology for predicting SOC under commercial forest landscapes. 
Maxent also demonstrated the ability to show the percentage contribution 
of each predictor variable and their influence through the analysis of the 
jackknife results (Table 3; Figure 3). It also automatically generated a visually 
appealing SOC distribution map (Figure 4) and accuracy assessments 
by producing the ROC curve, which is used to determine its predictive 
performance. Regardless of the benefits of the Maxent algorithm, it has 
some limitations. Maxent’s logistic output relies on an assumption and not 
an estimation of SOC prevalence. It is also hard to compare the outputs 
of Maxent with other regression algorithms as it gives environmental 
suitability rather than predicted likelihood of SOC occurrence.

Conclusion
In this study, we investigated the impact of topographic and bioclimatic 
data on SOC distribution under commercial forestry using the Maxent 
algorithm. Results indicate that rainfall and temperature, as well as 
topographic variables such as slope, elevation and TWI, are effective 
in mapping SOC distribution. Our model was useful in predicting 
SOC occurrence and yielded an effective framework for continuous 
monitoring and assessment of SOC. The method developed in this study 
is cost-effective and suggests the use of other readily available climatic 
and topographic information for the prediction of SOC under commercial 
forestry in South Africa and indeed globally. Results from this study are 
important to achieve the national carbon accounting objective and are 
also valuable to forest managers, ecologists and relevant stakeholders 
in understanding the spatial distribution of SOC. We recommend further 
experiments be conducted using higher-resolution data sets to assess 
the performance of the Maxent algorithm in predicting SOC. 
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