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Emerging from the energy crisis of 2008 in South Africa, climate change concerns and the global 
desire to reduce high ozone-depleting emissions, renewable energy sources like biogas are gaining 
wide acceptance in most localities for heating and electricity. The paucity of feedstock varieties is a 
major challenge plaguing the sustainability of this sector. Biomethane potential, biodegradability and 
degradation kinetics of organic substrates are essential for assessing the suitability of feedstocks for 
methane generation and the overall performance of the anaerobic digestion process in biogas plants. 
Waste from the vegetable okra (Abelmoschus esculentus) is a novel substrate; its biodegradability and 
degradation dynamics in biomethane production are largely unstudied, and were therefore the aims of 
this research. The substrate was digested for 25 days at the mesophilic condition and the biomethane 
potential data were recorded. Measured data of methane yield and the elemental composition of the 
substrate were used to fit five models (modified Gompertz, Stannard, transference function, logistic and 
first-order models) to predict degradation parameters and determine biodegradability of the substrate, 
respectively. Low lag phase (0.143 d), positive kinetic constant (0.2994/d) and the model fitness indicator 
(<10) showed that transference and first-order kinetic models predicted the methane yield better than 
did other growth functions. The experimental methane yield was 270.98 mL/gVS, theoretical methane 
yields were 444.48 mL/gVS and 342.06 mL/gVS and model simulation ranged from 267.5 mL/gVS to 
270.89 mL/gVS. With a prediction difference of 0.03–1.28%, all growth functions acceptably predicted 
the kinetics of A. esculentus waste. The findings of this study offer information on this novel substrate 
important for its use in large-scale biogas production.

Significance:
•	 Growing interest in biogas technology as an alternative energy source for both South African rural 

dwellers and industries, has mounted enormous pressure on known feedstocks, and instigated the 
search for novel substrates. 

•	 Our study shows that okra waste is a viable feedstock for biogas production. 

•	 The suitability of the first-order kinetic model over other models in predicting okra waste degradation 
was highlighted. 

Introduction
Global concerns regarding the depletion rate of fossil fuel sources, their adverse impacts on the environment and 
the need to reduce the emission of greenhouse gases, have necessitated overwhelming interest in unconventional 
energy sources from biomasses and wastes.1-3 Biogas technology is a renewable energy type, which combines 
sustainable waste management and efficient biofuel production.4 This waste-to-energy (biogas) process is an 
established technology, but it has been underexploited in most developing climes like South Africa. According to 
the South African Biogas Industry Association5 and Damm and Triebel6, more than 2.328 million households (about 
25% of all families in South Africa) use local fossil fuel sources like charcoal and firewood to meet their energy 
demands. The high cost and unavailability of electricity in most informal and rural settlements has increased both 
the demand for and development of biogas technologies.7 

Anaerobic digestion is a clean energy recovery process of biogas production through the biological degradation of 
organic wastes in the absence of oxygen for the generation of methane.8 This biomass degradation by microbes reduces 
the volume of waste and involves four phases: hydrolysis, acidogenesis, acetogenesis and methanogenesis.2,8,9 

According to Bharathiraja et al.9, the low cost, availability and novelty of feedstocks are the incentives needed for more 
investment in biogas production. This has necessitated the aggressive search for future energy crops with potential 
for ensuring feedstock security, optimisation of existing biomass feedstocks as well as the technological enhancement 
of feedstock digestion processes.9 Various efforts towards discovering novel biomass for biogas have been made. 
Adiga et al.10, Patil et al.11, Bai-Hang et al.12 and Visva Bharati et al.13 studied the enhancement of water hyacinth for 
biogas production. Anongnart et al.14, Rodriguez et al.15 and Kroger and Muller-Langer16 noted that both micro- and 
macro-algae is a viable substrate for biogas production. Housagul et al.17 and Aguilar-Aguilar et al.18 investigated the 
use of glycerol from biodiesel industries, singly and in combination, for biogas production, while Li et al.19 attempted to 
co-digest 33–53% spent cooking oil with food waste. Other novel substrates investigated include meadow grasses20 
and vegetables21. 

In countries such as China, over 200 million tons of about 700 million tons of vegetables produced annually ends 
up as residues and waste.22 Okra (Abelmoschus esculentus) waste is a vegetable waste-type, which is largely 
novel and has thus far been unexploited for biogas production. Okra is mainly grown in Africa and India (96% of 
worldwide production 23). Okra waste – like that of other vegetables and fruits – accounts for 40–50% of the 48.4% 
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total food waste globally, a significant volume across its processing 
value chain.23 Duman et al.24 stated that Turkey produces over 36 000 
tons of okra per year and that the utilisation of okra waste has been 
studied as part of Turkey’s development plan and vision. Okra and its 
stems are high in crude fibre, protein and fat; dired okra has about 25% 
crude fibre and 18% protein.25 According to Alam and Khan26, the entire 
crop waste contains 67.5% a-cellulose, 15.4% hemicellulose, 7.1% 
lignin, 3.4% pectin and 3.9% fat and waxes. Based on this composition, 
okra has high biomethane potential. 

Biochemical methane potential (BMP), according to Raposo et al.27 and 
Jingura and Kamusoko28, is a simple but reliable procedure for determining 
maximum methane volume produced per gram of the substrate’s volatile 
solid and indicates rate and extent of conversion of biodegradable organics 
to methane in an anaerobic digestion set-up. There are both experimental 
and theoretical BMP methods. Although the BMP of okra has not been 
studied, other vegetables and food wastes have been studied using 
Buswell’s and modified Dulong’s equations29,30 with the elemental (carbon, 
hydrogen, nitrogen, sulphur and oxygen) compositions of substrates22,30,31. 

Kinetic modelling is an accepted method32 to show the specific parameters 
of system performance. Experimental data are used in kinetic studies and 
results from these studies are often applied under the same conditions 
to estimate operational efficiencies of scaled-up reactors. Various 
kinetic model types, particularly first-order kinetic models, have been 
successfully used to simulate anaerobic digestion processes. Akin to the 
phase of bacterial growth, the rate of biomethane production showed a 
rising limb and a decreasing limb, which were indicated by exponential 
and linear equations.19,33 In the past, numerous researchers have predicted 
biomethane production potential using modified Gompertz, logistic and 
first-order kinetic models2,10,11,34,35, as well as sigmoidal models and other 
statistical models19,33,36.

The variation in the characteristics of okra waste from place to place, 
based on agronomical differences and storage conditions before diges-
tion, necessitates the evaluation of its kinetic properties. Fitting kinetic 
functions to the cumulative methane production curves obtained from the 
BMP process enables information on anaerobic process performance to 
be gathered. This information includes: whether the maximum methane 
yield (Bo) was attained, the maximum rate of methane production (Rmax), 
the degradation rate constant (K) and the lag phase (λ) duration.33 The ac-
curacy of biogas yield prediction in the model is dependent on the sub-
strate that is used as the feedstock.

This study was motivated by the huge amount of okra waste and its 
perceived high biomethane potential. We assessed the biodegradability 
and degradation kinetics of okra waste using both Buswell’s and Dulong’s 
theoretical BMP equations, and investigated the elemental composition of 
the substrate to the BMP assay and used the measured BMP data in five 
identified growth functions (modified Gompertz, Stannard, transference, 
logistic and first-order models). We also determined the suitability of these 
models for anaerobic digestion of okra waste. 

Materials and method
Substrate and inoculum characterisation
Pods (fruits) of okra (A. esculentus) waste were collected from Organic 
Farm in Centurion (Gauteng Province, South Africa) and mechanically 
pretreated. Inoculum from an active digester at the University of 
Johannesburg was degassed and acclimatised at 37 °C before use.31 The 
total solids (TS), volatile solids (VS), ash content and moisture content 
were measured using the standard gravimetric method (Method 1684 
of the US EPA for Total, Fixed and Volatile Solids in Water, Solids, and 
Biosolids). The carbon (C), hydrogen (H), oxygen (O), sulfur (S) and 
nitrogen (N) contents were determined using a CHNS elemental analyser. 
Elemental composition (C, H, N, S) of the samples was determined 
using a LECO CHNS-932 combustion analyser (TruMac, Argon, LECO 
Corporation, St. Joseph, MI, USA) at 1050 °C, with sulfamethazine as a 
standard substrate in accordance with Raposo et al.27. Oxygen content 
was calculated by assuming C + H + O + N + ash = 99.5% (on a VS 

basis).37 pH was measured using a pH meter (HI 9828 Multi-parameter, 
Hanna Instruments). All characterisation results are shown in Table 1.

Table 1:  Proximate and ultimate analyses of samples

Properties Inoculum Abelmoschus esculentus 

Initial pH 8.08±0.02 8.13±0.01

Final pH 7.68±0.01 8.15±0.02

Moisture content % 98.50±0.01 92.36±4.402

Ash content % 0.03±0.00 15.87±0.006

Total solids (TS) % 1.50±0.01 7.82±0.005

Volatile solids (VS) % 1.02±0.04 6.90±0.001

VS of TS % 68±0.01 88.36±4.402

Removed VS of TS % 89.5±0.00 76.06±0.12 

Carbon% TS NT 39.30±0.012

Hydrogen% TS NT 5.39±0.003

Oxygen% TS NT 35.74±0.003

Nitrogen% TS NT 3.21±0.003

C/N ratio NT 12.24±0.003

NT, not tested

Biomethane potential
The biomethane potential of okra waste process was performed in 
triplicate using the BMP assay (AMPTS II, Bioprocess Control, Sweden) 
with 500-mL reaction bottles at Bioprocess Laboratory, Mechanical 
and Industrial Engineering, University of South Africa, Florida Campus 
(Johannesburg, South Africa) as shown in Figure 1. Each reactor was filled 
to 400 mL of the total volume with the addition of 27.55 g okra based on 
6.90% VS, 370.94 mL of inoculum (inoculum to substrate ratio was 2:1) 
and 1.51 mL of distilled water. Nitrogen gas (Afrox Gas, South Africa) was 
used to flush out oxygen from the reactors. The reactors were operated 
at mesophilic temperature (37±1 °C) for 25 days. The entire test was 
performed as stipulated by the AMPTS II standard operation manual. 
Results were retrieved from the data logging platform of the reactors and 
used for the calculation of daily biogas production, production rate and 
cumulative methane production, as shown in Table 2 and Figure 2.

Figure 1:  Biomethane potential assay with the data acquisition system.
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Table 2:  Summary of key energy production parameters

Parameter Result

BMP (mL/gVS) 270.98

TBMP (mLCH4/gVS) 444.48

TBMPE* (mLCH4/gVS) 342.06

E* (MJ/kg) on %TS 14.63

E* (MJ/kgVS) on 88.36 %VS 12.93

BD (%) 60.97

BDE* (%) 79.22

Substrate formula C14.3 H23.4 O9.8 N1

BMP, biomethane potential; TBMP, theoretical biomethane potential; E, energy; 
BD, biodegradability

Theoretical biomethane potential and biodegradability
Methane production potential and biodegradability of okra were 
estimated using two theoretical biomethane potential (TBMP) 
approaches – Buswell and modified Dulong formulae – based on okra’s 
elemental composition.29,30 The energy value of feedstock E* (okra) and 
its theoretical biomethane potential (TBMPE*) were estimated using the 
modified Dulong equation. Boyles (modified Buswell) equation was 
used to determine the TBMP38 and biodegradability was calculated as 
shown in Equations 1 to 5. TBMP was predicated based on the following 
assumptions3: ideal microbial condition and total substrate digestion; 
complete mixing and constant temperature; substrate composition 
limited to only C, H, O, N, S and output in the form of CH4, CO2, NH3.

 Equation 1

 Equation 2

>  
 Equation 3 

 Equation 4

 Equation 5

where E* is the energy value of the substrate (MJ/Kg); methane energy 
content = 37.78 MJ/m3 at STP; CHONS = carbon, hydrogen, oxygen, 
nitrogen, sulfur (% TS); TBMP is the theoretical biomethane potential at 
STP ; and BDCH4 is the anaerobic biodegradability (%).

Kinetic models for biogas production
Non-linear regression analysis was performed using the curve-fitting tool 
in Matlab R2015b to evaluate the growth functions (modified Gompertz, 
Stannard, transference, logistic and first-order kinetic models) shown 
in Equations 6 to 10. The average measured cumulative methane 
production was used to evaluate the models; the model parameters and 
the goodness of fit are shown in Table 2 and Figure 2. 

Modified Gompertz     Equation 8

Stannard                        Equation 9

Transference                 Equation 10

Logistic                     Equation 11

First-order B = B0 (1 − Exp(−kt))  Equation 12

where B is cumulative specific methane production (mL/gVS); Bo 
is maximum specific methane production potential (mL/gVS); Rmax 
is the maximum specific methane production rate (mL/gVS- d); 
e is Exp(1)=2.718282; λ is the lag phase in days; k is the methane 
production rate constant (day-1); t is digestion time (days); and p is slope 
of growth. 

The kinetics of biogas production were evaluated using the five growth 
functions to determine the following parameters: Bo, Bp, k, λ, p, R2, 
Adjusted R2, Rmax and root mean square error (RMSE). The entire 
experiment was performed in triplicate and the average of the three 
values was used. Minitab 15 was used for all statistical analyses and all 
inferences are at a 95% confidence.

Results and discussion
The ultimate and proximate properties of okra waste are shown in 
Table 1. A mass of 27.55 g was determined based on 7.8157 %TS and 
6.8945 %VS. Although a high substrate VS/TS ratio of 88.36% was 
recorded, 76.06% of the substrate was removed during the anaerobic 
digestion process. This finding is in agreement with Li et al.31 who 
reported a high VS/TS to be desirable for biogas yield. The waste showed 
a C/N ratio of 12.24, which was outside the ideal range of 15–30, thus 
necessitating co-digestion or nutrient enrichment.31 

The experimental BMP assay gave a digestion period of 25 days, as shown 
in Figure 2. Okra waste resulted in a methane yield of 270.98 mL/gVS, 
which concurs with other reports of low yields from lignocellulosic 
vegetable wastes.22,31 Theoretical biomethane potential (TBMP) and 
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Figure 2:  Cumulative biogas production based on experimental and kinetic modelling results.
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biodegradability (BDCH4) calculated using Equations 1 to 5 using elemental 
and energy content of the substrate are shown in Table 2. TBMP based on 
elemental composition (444.48 mL/gVS) was higher than that obtained 
based on energy content (342.06 mL/gVS). BDCH4 based on elemental 
composition (60.97%) was lower than that based on energy content 
(79.22%). Raposo et al.27 reported that BDCH4<70% is considered an 
outlier or invalid. In view of this finding, TBMP based on energy content 
better satisfied the criterion. The low BDCH4 seen in elemental TBMP is 
consistent with the biodegradability of lignocellulosic vegetables.22,31

The measured and predicted methane production results, as well as the 
determined parameters, are shown in Figure 2 and Table 2. The cumulative 
measured biogas was 270.8 mL/gVS; the models predicted cumulative 
biogas to be 267.38, 267.99, 270.89, 267.50 and 270.15 mL/gVS, 
respectively, for modified Gompertz, Stannard, transference, logistic 
and first-order models. These values are consistent with the assertion of 
Raposo et al.27, who recommended that the difference between Bo and Bt 
should not be more than 10%, above which this kinetic model is deemed 
invalid for predicting anaerobic digestion processes.

The lag phase (λ) of the growth functions, which is the time required 
for bacteria to adapt and start biogas production, is given in Table 3 and 
Figure 2. The values are 0.872, 0.143 and 1.24 for modified Gompertz, 
transference and logistic models, respectively. The low λ values found 
in this study are in line with the report of Talha et al.39, who stated that 
lower lag phase is dependent on the activeness of the adapted inoculum 
and biodegradability of the organic part of the okra waste. 

Most lignocellulosic substrates have cellulose as their main polymer 
component (about 68% in the case of okra). The hydrolysis rate of cellulose 
is normally the rate-limiting step, and the biomethane production rate is 
denoted by k.40,41 The k-value of substrates can be determined via product 
formation (biomethane production or VFAs) and substrate depletion (VS, 
COD or DOC) methods.42 In this study, biomethane production (the product 
formed) was used to compute the k-values of both Stannard and first-
order models of 1.449/day and 0.2994/day, respectively. The k-values 
obtained were both high and positive, which, according to Dudek et al.41, 
could be because of the higher bioavailability of cellulose, which results 
in a faster rate of biogas production.34,35 This observation is in agreement 
with that of Veeken and Hamelers43, namely that biomethane production 
represents the hydrolysis rate of bioavailable substrate which decreases 
with decreasing VS and can be best described with first-order kinetics.

Transference and first-order models best predicted okra waste digestion, 
with a prediction difference of 0.03% and 0.31%, respectively. This finding 
is consistent with the report of Kafle and Chen36, who showed that the 
first-order kinetic model was found to be the best model for predicting 
BMP. Li et al.19 reported that the transference model performed better 

than the modified Gompertz model. The statistical indicators of model 
fitness (as shown in Table 3), ranged from 0.946 to 0.983, 0.941 to 
0.982 and 9.209 to 16.54 for R2, Adj. R2 and RMSE, respectively. In line 
with the report of Budiyono and Sumardiono35, an RMSE value of <10 
shows good model prediction. Based on this criterion, only transference 
and first-order kinetic models were within the accepted limit.

Conclusions
Experimental biomethane potential, biodegradability and degradation 
kinetics of okra waste were evaluated in this study using five growth 
functions. It was also shown that both energy content and elemental 
composition evaluation methods could be reasonably used to calculate 
TBMP and BDCH4 of okra waste. The goodness of fit, good predicted 
methane yield and lowest percentage prediction difference as observed 
showed that both transference and first-order models performed better 
than the other models evaluated. The positive kinetic constant and lower 
lag phase confirmed the high rate of degradation. Based on the goodness 
of fit, the logistic model performed the worst. Based on the substantial 
cumulative BMP yield of this novel substrate, further studies aimed at 
improving its biodegradability will be desirable. 
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