Supplementary material to: Symes C, et al. S Afr J Sci. 2017;113(5/6), Art. #2016-0276, 5 pages

How to cite: Symes C, Loubser E, Woodborne S. Stable isotope (δ^{13}C) profiling of xylitol and sugar in South Africa [supplementary material]. S Afr J Sci. 2017;113(5/6), Art. #2016-0276, 3 pages. http://dx.doi.org/10.17159/sajs.2017/20160276/suppl

Table 1: Specific δ^{13}C values for samples (with corresponding labels) presented in Figure 1

<table>
<thead>
<tr>
<th>Label</th>
<th>δ^{13}CVPDB (%)</th>
<th>Label</th>
<th>δ^{13}CVPDB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X14</td>
<td>-26.5</td>
<td>S25</td>
<td>-27.0</td>
</tr>
<tr>
<td>X10</td>
<td>-22.3</td>
<td>S26</td>
<td>-26.6</td>
</tr>
<tr>
<td>X13</td>
<td>-20.4</td>
<td>S22*</td>
<td>-26.2</td>
</tr>
<tr>
<td>X11</td>
<td>-20.4</td>
<td>S15</td>
<td>-25.3</td>
</tr>
<tr>
<td>X1</td>
<td>-20.3</td>
<td>S2</td>
<td>-24.3</td>
</tr>
<tr>
<td>X27</td>
<td>-20.2</td>
<td>S24*</td>
<td>-23.5</td>
</tr>
<tr>
<td>X28</td>
<td>-20.0</td>
<td>S27</td>
<td>-13.1</td>
</tr>
<tr>
<td>X26</td>
<td>-19.9</td>
<td>S12</td>
<td>-12.8</td>
</tr>
<tr>
<td>X2</td>
<td>-19.7</td>
<td>S18</td>
<td>-12.8</td>
</tr>
<tr>
<td>X8</td>
<td>-17.1</td>
<td>S14</td>
<td>-12.7</td>
</tr>
<tr>
<td>X15</td>
<td>-15.2</td>
<td>S19</td>
<td>-12.5</td>
</tr>
<tr>
<td>X5</td>
<td>-13.7</td>
<td>S16</td>
<td>-12.4</td>
</tr>
<tr>
<td>X25</td>
<td>-13.0</td>
<td>S23*</td>
<td>-12.4</td>
</tr>
<tr>
<td>X3</td>
<td>-12.8</td>
<td>S3*</td>
<td>-12.3</td>
</tr>
<tr>
<td>X19</td>
<td>-11.6</td>
<td>S11</td>
<td>-12.2</td>
</tr>
<tr>
<td>X18</td>
<td>-11.3</td>
<td>S8</td>
<td>-11.8</td>
</tr>
<tr>
<td>X9</td>
<td>-11.0</td>
<td>S21*</td>
<td>-11.8</td>
</tr>
<tr>
<td>X29</td>
<td>-11.0</td>
<td>S10</td>
<td>-11.3</td>
</tr>
<tr>
<td>X7</td>
<td>-10.9</td>
<td>S20*</td>
<td>-11.1</td>
</tr>
<tr>
<td>X22</td>
<td>-10.8</td>
<td>S4*</td>
<td>-11.0</td>
</tr>
<tr>
<td>X20</td>
<td>-10.7</td>
<td>S1</td>
<td>-11.0</td>
</tr>
<tr>
<td>X21</td>
<td>-10.7</td>
<td>S6</td>
<td>-10.9</td>
</tr>
<tr>
<td>X6</td>
<td>-10.7</td>
<td>S9</td>
<td>-10.8</td>
</tr>
<tr>
<td>X12</td>
<td>-10.6</td>
<td>S5*</td>
<td>-10.0</td>
</tr>
<tr>
<td>X30</td>
<td>-10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>-10.1</td>
<td>S13</td>
<td>-26.3</td>
</tr>
<tr>
<td>X16</td>
<td>-10.1</td>
<td>S28</td>
<td>-25.9</td>
</tr>
<tr>
<td>X17</td>
<td>-9.7</td>
<td>S7</td>
<td>-20.3</td>
</tr>
<tr>
<td>X33</td>
<td>-10.8</td>
<td>S17</td>
<td>-25.8</td>
</tr>
<tr>
<td>Xy33</td>
<td>-11.5</td>
<td>S29</td>
<td>-16.1</td>
</tr>
<tr>
<td>Xy23*</td>
<td>-22.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xy24*</td>
<td>-21.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Specific δ^{13}C values for calculation of xylitol and sugar source endpoints, as shown in Figure 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>δ^{13}C$_{VPDB}$ (%)</th>
<th>N</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize cob</td>
<td>-11.3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Maize seeds</td>
<td>-11.9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Maize seeds</td>
<td>-15.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Maize seeds</td>
<td>-10.5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Zea mays</td>
<td>-13.9</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Corn</td>
<td>-11.2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Mean maize isotope value</td>
<td>-12.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula pendula tree</td>
<td>-28.4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>B. pendula stemwood cellulose</td>
<td>-29.0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>B. pendula fall leaves</td>
<td>-28.1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>B. pendula leaves</td>
<td>-28.9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>B. pendula whole leaf</td>
<td>-28.0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Mean birch isotope value</td>
<td>-28.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharum</td>
<td>-13.9</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cane sugar</td>
<td>-11.5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Mean sugarcane isotope value</td>
<td>-12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beet sugar</td>
<td>-25.5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Beet sugar</td>
<td>-25.6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Mean sugar beet isotope value</td>
<td>-25.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

4. Smith B, Epstein S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 1971;47:380–384. https://doi.org/10.1104/pp.47.3.380

