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Digital terrain model interpolation is intrinsically a surface fitting problem, in which unknown heights H are 
estimated from known X-Y coordinates. Notable methods of digital terrain model interpolation include inverse 
distance to power, local polynomial, minimum curvature, modified Shepard’s method, nearest neighbour and 
polynomial regression. We investigated the support vector machine regression (SVMR) as a new alternative 
method to these models. SVMR is a contemporary machine learning algorithm that has been applied to 
several real-world problems aside from digital terrain modelling. The SVMR results were compared with 
those from notable parametric (the nearest neighbour) and non-parametric (the artificial neural network) 
techniques. Four categories of error analysis were used to assess the accuracy of the modelling: minimum 
error, maximum error, means error and standard error. The results indicate that SVMR furnished the lowest 
error, followed by the artificial neural network model. The SVMR also produced the smoothest surface 
followed by the artificial neural network model. The high accuracy furnished by SVMR in this experiment 
attests that SVMR is a promising model for digital terrain model interpolation.

Introduction
Engineers and other related scientists are often charged with the responsibility of producing digital maps that 
represent the three-dimensional visualisation of the earth’s surface. These maps usually serve as auxiliary data for 
engineering designs of roads, bridges, drainage systems and general landscaping. These digital three-dimensional 
maps are referred to generically as digital terrain models (DTMs). A DTM is referred to as a ‘form of computer 
surface modelling which deals with the specific problems of numerically representing the surface of the earth’1.

A DTM is created by using one of two methods: triangulation or gridding. In a gridding method, the corners of 
regular rectangles or squares are calculated from the scattered control points. In triangulation, triangles are created 
based on the scattered control points. These triangles do not intersect each other and represent the terrain surface 
as a linear or non-linear function. In both methods, the heights of grid points and triangular points with unknown 
heights in the modelled area are estimated by interpolation using their control points.2 Notable methods of DTM 
interpolation include inverse distance to power, local polynomial, minimum curvature, modified Shepard’s method, 
polynomial regression, radial basis function, Kriging and nearest neighbour.3,4 

The aim of this study was to investigate the support vector machine regression (SVMR) model,5-7 as a new method 
of DTM interpolation. The goal of the SVMR model is to construct a hyperplane that lies close to as many data 
points as possible, by choosing a hyperplane that has a small norm that simultaneously minimises the sum of 
the distances from the data points to the hyperplane. SVMR attempts to minimise the generalisation error bound 
so as to achieve generalised performance, instead of minimising the observed training error. The idea of SVMR is 
based on the computation of a linear regression function in a high-dimensional feature space in which the input 
data are mapped via a non-linear function.7 In this experiment, the SVMR results were compared with those from 
a notable parametric technique (nearest neighbour, NN) and a notable non-parametric technique (artificial neural 
network, ANN).

Support vector machine regression algorithm
For the linear case, given the set of data,

(yi,xi),...,(yl,xl),x∈Rn,y∈R

with a linear function

ƒ(x)=(w.x)+b,8 Equation 1

hence the regression function is given by the minimum of the functional

Φ(w,*,)=     |w|²+C  ∑i+∑i*
1
2

l l

i=1 i=1
 Equation 2

where C is a pre-specified penalty value, and , * are slack variables representing upper and lower constraints, 
respectively.9 Using an -insensitive loss function

L(y)=
0 for |ƒ(x)-y|<
|ƒ(x)-y|- otherwise Equation 3

the solution is given by:

 Equation 4 
∑   ∑(αi-αi*)(αj-αj*)(xi 

.xj)
1
2

l

i=1 i=1

l

+∑αi(yi-)-αi*(yi+)
l

i=1

maxW(α,α*)=max
α,α* α,α*
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with constraints

0≤αi≤C,  i=1,...,l Equation 5

0≤αi*≤C,  i=1,...,l Equation 6

∑(α-αi*)=0
l

i=1
 Equation 7

∑(αi-αi*)xi

l

i=1
w=  Equation 8

b=-      w . [xr 
.xs]

1
2

6
 Equation 9

The Karush–Kunn–Tucker conditions that are satisfied by the solution are:

αiαi*=0,  i=1,...,l Equation 10

min     ∑   ∑ βi βj(xi 
. xj )-∑ βi yiβ i=1 i=1j=1

l l l1
2  Equation 11

with constraints

-C≤βi≤C,  where i=1,...,l Equation 12

∑ βi=0
l

i=1
 Equation 13

and the regression function is given by Equation 1, where: 

w=∑ βi xi

l

i=1  Equation 14

and

b=-     w.[xr 
. xs]

101
2

 Equation 15

The non-linear SVMR solution using an -sensitive function is given by:

maxW(α,α*)=max
α,α* α,α*

∑αi*(yi-)-αi(yi+)
l

i=1

∑  ∑(αi*-αi)(αj*-αj)K(xi ,xj)
1
2

l l

i=1 j=1

 Equation 16

with constraints

0≤αi≤C, i=1,...,l Equation 17

0≤αi*≤C, i=1,...,l Equation 18

∑(αi*- αi )=0
l

i=1
 Equation 19

Solving Equation 16, with constraints Equations 17–19, determines the 
Lagrange multipliers αi , αi* and the regression function is given by:

ƒ(x)=∑(αi-αi*)K(xi ,x)+b
SVs

 Equation 20

where

w.x=∑(αi-αi*)K(xi ,x)
SVs

 Equation 21

b=-    ∑(αi-αi*)[K(xr ,xi)+K(xs ,xi)]
SVs

1
2  Equation 22

The kernel K(xi ,xj )can be any of the following common kernel functions: 
the linear kernel x.xi, polynomial kernel (x.xi+1)d 

 
and radial basis 

function kernel

K(xi ,xj)=exp
|xi-xj|

2

22
 .7

Methodology
The eastings (E), northings (N) and orthometric heights (H) of 601 
points were sampled from a 3.068-ha portion located in southern 
Nigeria (Figure 1). The sampled area was bounded by UTM coordinates 
381810E–382060E and 559700N–559980N (Figure 2). Out of the 601 
sampled points, 200 points were selected for training the SVMR algorithm. 
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Figure 1: A map showing the location of the 3.068-ha area sampled in 
southern Nigeria.

The experiment was done in MATLAB. The training data contained E, N 
and H values. E and N were the explanatory variables while H was the 
target variable. The test data contained just E and N in order to predict 
the values of H. The SVMR model was trained with known E, N and H 
values in order to estimate H values of points not used as training data. 
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Figure 2: UTM coordinates of the sampled points in the study area.

The stratified random sampling was used to select the training data. 
The spatial dependency of the observed data was examined by plotting 
its semivariances against the lag distance to produce a semivariogram 
(Figure 3). The calculated nugget was 0.6. The range was 70, while the 
sill was 29.6. Beyond the range value the data are spatially independent, 
whereas the data within the range area are spatially dependent. The 
nugget value of 0.6 indicated that the error in observation was minimal. 
The sill value of 29.6 indicated the maximum value of the semivariance 
that corresponded to the range value. 
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Figure 3: Semivariogram of the observed data.

The 200 points selected for training and testing were split into classes of 
10 (Figure 4). The box plot in Figure 4 shows the statistical distribution 
of the data. The inner line of the box indicates the median of the data. 
The top of the upper tail indicates the highest value of the data, while 
the bottom of the lower tail indicates the lowest value of the data. The 
experiment was implemented with an optimal -sensitive function value 
=0.1. The polynomial, radial basis function and the linear kernels were 
investigated to select the best kernel function for the experiment, through 
the method of cross-validation. 
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The inner lines of the box indicate the median of the data. The top of the upper tail 
indicates the highest value of the data, while the bottom of the lower tail indicates the 
lowest value of the data.

Figure 4: Box plots of the 10 data sets of 20 sample points each.

The selection of the optimum kernel parameters’ values of degree d, 
gamma and penalty value C was done using the k-fold cross-validation 
process where k=10.11 In each experiment, nine data sets (k-1 data 
sets) were put together to train the SVMR while the remaining one data 
set was held to test the accuracy of the experiment. The experiment was 
repeated in 10 folds until all 10 data sets were used for both training and 
testing (Figure 5).
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Figure 5: Cross-validation results for (a) degree and gamma and (b) 
penalty value, C.

The cross-validation result from Figure 5a shows the accuracy for degree 
and gamma using values 1 to 10. The value of 4 was found to be the value 
for degree with the highest accuracy, while 6 was found to be the highest 
value of gamma with the highest accuracy. From Figure 5b, the values of C 
with the highest accuracy were 60, 100 and 80 for polynomial, radial basis 
function and linear kernels, respectively. The polynomial kernel yielded the 
highest accuracy, and the best value of d was 4 (Figure 5). 

108

106

104

102

100He
ig

ht

559940
559660

559780
569700 381800

381865
381910

381965
382000

Northing (m) Easting (m)

98

96

a

No
rt

hi
ng

 (m
)

106

105

104

103

102

101

100

99

98

97
381820

566700

566746

566790

381865
Easting (m)

381910

b

Figure 6: Support vector machine regression method (a) digital terrain model plot and (b) contour plot.
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Results
The resulting DTM and contour plots from interpolation using SVMR are 
depicted in Figure 6. After interpolation of the heights of the unsampled 
points using SVMR, the same was implemented with the ANN and 
NN models. 

The NN technique predicts the value of an attribute at an unsampled 
point based on the value of the nearest sample by drawing perpendicular 
bisectors between sampled points (n), thereby forming polygons (Vi, 
i=1,2,...,n).4 One polygon is produced per sample and the sample is 
located in the centre of the polygon, such that in each polygon all points 
are nearer to its enclosed sample point than to other sample points.12-14 
The estimations of the attribute at unsampled points within polygon Vi 
are the measured value at the nearest single sampled data point xi, that 
is ẑ  (x0)=z(xi). The weights are:

i=
1 if xi∈Vi

0 otherwise Equation 23

All points within each polygon are assigned the same value.12,14 The NN 
DTM and contour plots are presented in Figure 7. 

The ANN was programmed using multilayer perceptron with a sigmoidal 
hidden-layer transfer function and linear output neurons. The multi-
layer perceptron neural network was trained with a back-propagation 
algorithm, using a two-layer feed-forward neural network. The network 
had an input layer, an output layer and one or two hidden layers; however, 
there is no limit to the number of hidden layers.15 Basically a signal from 
neuron i of the first input layer of a cell x at time t received by a neuron j 
of the hidden layer can be expressed as: 

netj(x,t)=∑Wi ,j S'i(x,t)
j

 Equation 24

where S'i (x,t) denotes the site attributes given by variable (neuron) i; 
Wi,j is the weight of the input from neuron i to neuron j; netj(x,t) is the 

signal received for neuron j of cell x at time t.15 Based on the method of 
cross-validation, the random seed number was set and the required number 
of neurons in the hidden layer was set between 1 and 50. The ANN was 
initialised with initial weights; hence different results were obtained every 
time the ANN model was run. To ensure the results remained the same at 
every run of the neural network the random seed number was kept constant. 
The random seed number is an arbitrary constant chosen by trial and error. 

After the random seed number had been set, the number of hidden neurons 
was the single parameter that was adjusted to obtain simulation results of 
the ANN. The training of the neural network was done by simply adjusting 
the number of neurons in the hidden layer in order to minimise the training 
error. The training error is the discrepancy between the predicted and the 
actual value. The adjustment of the number of neurons was sustained until 
the training error fell below a pre-determined threshold.16-19 The ANN DTM 
and contour plots are presented in Figure 8.

In Figure 9, the sampled heights were plotted against the 200 points used for 
the validation of the models. The discrepancies between the observed points 
and the predicted points using SVMR, ANN and NN are depicted in Figure 9. 
The plots in Figure 9 show that SVMR yielded the best fit, followed by ANN. 

The experimental errors were calculated by comparing the estimated values 
using these models with their actual values from the sample. Out of the 
601 sampled points, 200 points were selected for training while 50 points 
were used to test the accuracy of the modelling. The final result was selected 
from several results obtained by repeating the process, and by re-selecting 
the training and test data (Figure 10). 

The box plot in Figure 10a shows the statistical error distribution of the data. 
The inner lines of the box indicate the median of the data. The top of the 
upper tail indicates the highest value of the data and the bottom of the lower 
tail indicates the lowest value of the data. From Figure 10a, the calculated 
minimum error was -1.39, the maximum error was 2.05 and the mean error 
was -0.07, using the SVMR model. For the ANN model, the calculated 
minimum error was -1.44, the maximum error was 2.08 and the mean 
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Figure 7: Nearest neighbour method (a) digital terrain model plot and (b) contour plot. 
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Figure 8: Artificial neural network method (a) digital terrain model plot and (b) contour plot.
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for spatial surface interpolation. However, the differences between the 
SVMR and ANN results are not significant; more examples are required 
for the generalisation to be valid. 
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Figure 9: Plots showing discrepancies between the observed heights 
and the heights predicted using (a) support vector machine 
regression (SVMR), (b) artificial neural network (ANN) and 
(c) nearest neighbour (NN) methods. 
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Figure 10: (a) Box plot showing statistical error distribution and (b) bar 
plot showing the calculated standard errors for support vector 
machine regression (SVMR), artificial neural network (ANN) 
and nearest neighbour (NN) models.

error was -0.09. For the NN model, the calculated minimum error was 
-2.97, the maximum error was 3.86 and the mean error was 0.35. From 
Figure 10b, the calculated standard errors for SVMR, ANN and NN were 
0.60, 0.65 and 0.81, respectively. 

Conclusion
The SVMR results were compared with those of the NN and ANN 
techniques. The NN and ANN are common parametric and non-parametric 
models, respectively, that have been used in previous studies.3 From 
Figure 10, we can see that SVMR produced the best results of all the 
models, followed by the ANN model. The results from the NN model 
were the least accurate. SVMR also produced the smoothest surface, 
followed by ANN, while NN produced the roughest surface (Figures 6–8). 
Even though the SVMR is not a common method of DTM interpolation, 
our results show that it is a robust technique and can be considered 
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