Photocatalytic degradation of methyl red dye

M.A. Mahmoud, A. Poncheri, Y. Badr and M.G. Abd El Wahed

Silica nanoparticles (SiO2 NPs) are active in the photocatalytic degradation of methyl red dye (MR). SiO2 NPs and SiO2 NPs that have been doped with either silver (Ag NPs) and/or gold nanoparticles (Au NPs) were prepared. The particle size and morphology of the catalysts were assessed by transmission electron microscopy (TEM) imaging. The rate of photocatalytic degradation of MR was found to increase from SiO2 NPs, SiO2 NPs coated with both Au NPs and Ag NPs, SiO2 NPs, SiO2 NPs coated with Ag NPs, SiO2 NPs coated with Au NPs, Ag+-doped SiO2 NPs to Au3+-doped SiO2 NPs.

Key words: silica nanoparticles, photocatalysis, photocatalytic degradation, gold, silver

Introduction

Most dyes used in the pigmentation of textiles, paper, leather, ceramics, cosmetics, inks and food-processing products are derived from azo dyes, which are characterised by the presence of one or more azo groups (-N=N-) in their structure. A photocatalytic degradation of azo dyes is important, since azo dyes are carcinogenic and mutagenic, and decompose into hazardous substances under sunlight. Several photocatalysts, such as silica-alumina, silica-supported zirconia, silica-supported magnesia, and silica-alumina-titania, exhibit activity under UV irradiation at room temperature. The most active photocatalyst is semiconductor TiO2. By doping metal ions into TiO2, the activity can be increased. Other materials that have been studied include CuO, Fe2O3, and NiO. However, the use of TiO2 is limited by its low absorption coefficient for sunlight with wave lengths below 380 nm. In order to have activity, the dye must be adsorbed onto the catalyst, which limits its practical use.

In this study, we prepared silica nanoparticles (SiO2 NPs) and modified the surface by doping with metal ions or coating with metallic nanoparticles. We also studied the effect of additives on the kinetics and the mechanism of photocatalytic degradation of the MR dye.

Methods

Methyl red (MR), ethanol, hydrogen tetrachloroaurate (HAuCl4) and tetraethylorthosilicate (TEOS) were purchased from Sigma-Aldrich; while silver nitrate (AgNO3), nitric acid (HNO3) and sodium borohydride (NaBH4) were obtained from Fluka.

Preparation of silica nanoparticles (SiO2 NPs)

The SiO2 NPs were prepared from TEOS by HNO3-catalysed hydrolysis. Tetraethylorthosilicate and ethanol, in volumes of 10 ml, were mixed together; the resulting mixture was added drop-wise to 60 ml of a 0.1 M HNO3 solution. The final mixture was stirred for 8 h at 60°C for complete hydrolysis of TEOS to SiO2 NPs. The concentration of the SiO2 NPs solution, after it was diluted to 90 ml by distilled water, was found to be 30 g l-1. These particles were centrifuged, washed with ethanol and dried in air. The particles were then used for coating for catalysis without further treatment.

Preparation of metal NPs on the surface of SiO2 NPs

Ag NPs, Au NPs, or co-deposited NPs were adsorbed to the surface of SiO2 NPs with a molecular ratio of 0.1%. Deposition of pure metal samples was accomplished by mixing 1 mM of AgNO3 (or HAuCl4) with 80 ml of SiO2 NPs (0.999 M) under 5 min of vigorous stirring. Next, 1 mM NaBH4 was added and the solution was diluted to 100 ml with doubly-distilled water. To prepare Au NPs and Ag NPs co-deposited on the surface of SiO2 NPs, 0.5 mM of AgNO3 was mixed with 0.999 M and the solution was stirred for 5 min. Then 0.5 mM NaBH4 was added. Thereafter, 0.5 mM of HAuCl4 was added, followed by an additional amount of 0.5 mM NaBH4 with stirring. Following the reduction, the samples were repeatedly centrifuged and washed with water to remove unreacted AgNO3 and HauCl4. The samples were then dried at 80°C.

Photocatalytic degradation experiment

The photocatalysts, SiO2 NPs, SiO2 NPs doped with Ag+ or Au3+, and SiO2 NPs with Ag and/or Au NPs deposited on the surface, were added to a MR solution to obtain 100 ml of 500 mg l-1 photocatalyst and 50 ppm of MR. Then, to establish the adsorption equilibrium between the MR and the photocatalysts, the resulting solution was stirred in the dark for 20 min. The zero time reading was taken and the solution was exposed to a xenon lamp.

Instruments

The setup used for the photocatalytic degradation experiments consisted of a 250 ml beaker with a xenon lamp (50 W, Oriel mode 60001), mounted 20 cm from the surface for use as a source of artificial sunlight. The solution was stirred during irradiation. A Bio-carry 50 UV-Vis spectrophotometer, with a range of
190–1100 nm, was used to measure the absorption spectra of MR as a function of irradiation time. Transmission electron microscopy (TEM) (JEOL) was used to determine the particle size and morphology. Transmission electron microscopy images were taken by drying a drop of colloidal photocatalyst on a surface of a copper-coated carbon grid. Particle size and distribution were obtained from the 150 particles within the TEM image that were enlarged and measured.

The MR dye has an absorption maximum at 522 nm (pH ~4) and its concentration can be determined optically with the aid of a calibration curve. The results revealed a linear relationship for all concentrations of the dye (i.e., Beer’s law was obeyed).

Results and discussion

Determination of the particle size of silica photocatalysts

The catalytic power of such particles is strongly correlated to particle size and distribution of sizes. This is because the particle’s size has a great effect on the energy levels of the nano-photo-catalyst. Consequently, to obtain a good understanding of the photocatalytic processes, the particle size, morphology, and size distribution should be studied. Figure 1 represents the TEM image of (a) SiO₂ NPs and (b) Ag NPs or (c) Au NPs deposited on the surface of SiO₂ NPs. The SiO₂ NPs were spherical with a large size distribution (15 ± 8 nm). The Ag NPs and Au NPs deposited on the surface of SiO₂ NPs had an irregular shape due to the presence of particles. The size distributions were 17 ± 5 nm and 19 ± 6 nm for Ag NPs and Au NPs, respectively.

Photocatalytic degradation of MR dye by SiO₂ NPs

The absorption band of MR dye was found to be centred at 522 nm. No change in the optical absorption peak intensity was observed in the presence or absence of SiO₂ NPs, for up to 10 h in the dark. Additionally, only a very small change in the intensity of the maximum absorption was observed after 120 min irradiation in the absence of SiO₂ NPs.

Figure 2 shows the absorption spectra of MR before and after exposure to the xenon lamp for different lengths of time. In the presence of SiO₂ NPs as a photocatalyst, the intensity of the peak was found to decrease with increasing irradiation time due to photocatalytic degradation of MR. In addition to the first peak, a second peak appeared at about 415 nm and increased with time for 50 min, after which it decreased. Complete bleaching of the solution was obtained after 120 min.

Photocatalytic degradation of MR dye by Ag NPs and Au NPs deposited on the surface of SiO₂ NPs

The Ag NPs and Au NPs had a great effect on the catalytic properties of SiO₂ NPs. The photocatalytic degradation of MR was observed in the presence of Ag NPs and/or Au NPs deposited on the surface of SiO₂ NPs. The band corresponding to MR absorption was found to decrease with time in the case of both pure Ag NP- and pure Au NP-deposited SiO₂ NP samples. The rate of decay was sharper in the case of the Ag NPs. Both Ag NPs and Au NPs had rates of decay greater than pure SiO₂ NPs. The peak rate of decay of MR, in the case of co-deposited Au NPs and Ag NPs on SiO₂ NPs, lay between the rates of decay for pure Ag NPs and pure Au NPs. Complete discoloration took place after 70 min, 90 min and 75 min for Ag NPs, Au NPs, and Au NPs and Ag NPs co-deposited on SiO₂ NPs, respectively. It was found that the concentration of intermediate products was lower in the case of Au NPs compared to Ag NPs, but these products decreased after 35 min in both cases.

Photocatalytic degradation of MR dye by SiO₂ NPs doped with Ag⁺ and Au³⁺ ions

The photocatalytic degradation of MR by SiO₂ NPs was found to be enhanced in the presence of Ag⁺ or Au³⁺ ions. The rate of MR degradation was found to be faster in Au³⁺ doped SiO₂ NPs than when Ag⁺ was used. The colour of SiO₂ NPs became dark in the case of Ag⁺ and Au³⁺ ions. The amount of intermediate products was found to increase with time in the case of doping with Ag⁺ and Au³⁺ until 20 min and 5 min into the reaction, respectively; it then decreased until complete discoloration at 60 min and 13 min, respectively.

Kinetics study of photocatalytic degradation

The Langmuir-Hinshelwood model33 can be used to describe the relationship between the rates of the photocatalytic degradation of dye in the presence of SiO₂ NPs as a function of irradiation time. The rate equation is used in the form:33

\[
\frac{dC}{dt} = -kC
\]

where \(C\) is the concentration of the dye, \(t\) is time, and \(k\) is the rate constant.

Fig. 1. Transmission electron microscopy images of (A) SiO₂ NPs, (B) Ag NPs deposited on the surface of SiO₂ NPs and (C) Au NPs deposited on the surface of SiO₂ NPs.

Fig. 2. The absorption spectra of methyl red after photocatalytic degradation by SiO₂ NPs and irradiation for different durations.
The adsorption coefficient of the reactant on SiO₂, \(k_{\text{ads}} \), is the reaction rate constant and \(C \) is the concentration at any time \(t \). The values of \(k_{\text{ads}} \) and \(k_{\text{ads}} \) are used to explain the effect of light intensity on the equilibrium constant for the fast adsorption-desorption processes between the surface monolayer at SiO₂ and the bulk solution. Then, by integration of Equation 1:

\[
\ln \left(\frac{C}{C_0} \right) = k_{\text{ads}} t + k_{\text{ads}} t,
\]

where \(C_0 \) is the initial concentration.

For pseudo-first-order reaction \(k_{\text{ads}} t \) is very small compared to 1 in the denominator of Equation 1, so it is simplified and integrated to be:

\[
\ln \left(\frac{C}{C_0} \right) = k_{\text{ads}} t = kt,
\]

where \(k = k_{\text{ads}} \) is the pseudo-first-order reaction rate constant, and the half-life time \(t_{1/2} \) can be calculated using the following expression:

\[
t_{1/2} = \frac{0.693}{k}.
\]

Plotting the natural logarithm of the ratio between the original concentration of MR and the concentration after photocatalytic degradation \((\ln(C/C_0)) \) versus the corresponding irradiation time \((\text{min}) \) yields a linear relationship as shown in Fig. 3. Therefore, the photocatalytic degradation reaction of MR by SiO₂ NPs belongs to the pseudo-first-order reaction kinetics. The rate constant is the slope of the straight line in Fig. 3. Equation 4 was used to calculate the half-life time for the photocatalytic degradation of MR by SiO₂ NPs, SiO₂ NPs doped with Ag⁺ ions, SiO₂ NPs doped with Au³⁺ ions, and Ag NPs (and/or) Au NPs deposited on the surface of SiO₂ NPs. These values are summarised in Table 1.

Table 1. The rate constant and half-life time of photocatalytic degradation of methyl red

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Rate constant (min)</th>
<th>Half-life time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au³⁺-doped SiO₂ NPs</td>
<td>0.370</td>
<td>1.9</td>
</tr>
<tr>
<td>Ag⁺-doped SiO₂ NPs</td>
<td>0.050</td>
<td>13.9</td>
</tr>
<tr>
<td>Ag NP-deposited SiO₂ NPs</td>
<td>0.046</td>
<td>15.1</td>
</tr>
<tr>
<td>Au NP- and Ag NP-deposited SiO₂ NPs</td>
<td>0.037</td>
<td>18.7</td>
</tr>
<tr>
<td>Au NP-deposited SiO₂ NPs</td>
<td>0.032</td>
<td>21.7</td>
</tr>
<tr>
<td>SiO₂ NPs</td>
<td>0.020</td>
<td>34.6</td>
</tr>
</tbody>
</table>

The mechanism for photocatalytic degradation of MR dye

Jiang et al.25 studied the negative shift in the X-ray photoelectron spectra of SiO₂ NPs coated with Ag NPs compared to pure SiO₂ NPs and reported that this shift could be attributed to the electron transfer between Ag NPs and SiO₂ NPs. Moreover, SiO₂ NPs were found to be photoexcited under UV irradiation and showed an absorption band at ~309 nm, which was attributed to the charge transfer from the bonding orbital of Si–O to the 2p nonbonding orbital of non-bridging oxygen.35

When a photon of UV light strikes the SiO₂ surface, an electron from its valence band (vb) jumps to the conduction band (cb) leaving behind a positively charged hole \((h^+) \). The negative charge is increased in the conduction band \((e^-) \) and photocatalytic active centres are formed on the surface of SiO₂ NPs (as proven from the photoluminescence measurements)30 according to Equation 5:

\[
\text{SiO}_2 + h^+ \rightarrow e^- + h^+. \tag{5}
\]

The valence band holes react with the chemisorbed H₂O molecules to form reactive species such as ·OH radicals, which subsequently react with dye molecules to cause their complete degradation.

\[
(\text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}^-) + h^+ \rightarrow \text{H}^+ + \text{OH}. \tag{6}
\]

Alternatively, \(e^- \) and \(h^+ \) can recombine on the surface of the particle within a few nanoseconds and the resulting energy is dissipated as heat. Furthermore, the \(e^- \) and \(h^+ \) can be trapped in surface states where they may react with species adsorbed or close to the surface of the particle. The \(e^- \) can react with an acceptor, such as dissolved O₂, which consequently is transformed into a super oxide radical anion \((O_2^-) \) which leads to the formation of additional \(\text{HO}_2^- \) in Equation 7.

\[
\text{O}_2^- + e^- \rightarrow \text{O}_2^+ + (\text{H}^+ + \text{OH}^-) \rightarrow \text{HO}_2^- + \text{OH}. \tag{7}
\]

On the other hand, \(h^+ \), could interact with donors, such as ·OH and \(\text{O}_2\text{H}^- \), to form ·OH radicals. These radicals also attack the MR in the following manner:

\[
\text{HO}_2^- + \text{OH} + h^+ \rightarrow \text{OH}. \tag{8}
\]

The main factor affecting the efficiency of SiO₂ NPs is the amount of ·OH radicals as described above. Therefore, any factor that supports the generation of ·OH radicals will enhance the rate of photocatalytic degradation of MR. When Au³⁺ or Ag⁺ ions are present during the reaction, they are adsorbed on the surface of SiO₂ NPs and then combine with the electrons in the conduction band of SiO₂ NPs to form the corresponding metal (Equation 9). These ions reduce the recombination of charges \((K_0) \) and \((K_e) \) and favour the formation of ·OH radicals.33 The enhancing effect of Au³⁺ and Ag⁺ may be explained by their ability to trap electrons and generate holes so they act as electron scavengers.35

\[
e^- + (\text{Au}^{3+}, \text{Ag}^{+}, \text{or H}^+) \rightarrow (\text{Au}^0, \text{Ag}^0, \text{or H}_2\text{T}) \tag{9}
\]

The mechanism of photocatalytic degradation of MR by the surface of SiO₂ NPs loaded with Ag NPs, Au NPs, or both Au and Ag NPs could be controlled by the deposited nanoparticles because of their effect on the electron-hole recombination process.34 The major role of the deposited surface particles is the...
consumption of electrons and passing of those electrons to H\(^+\) ions or to O\(_2\). The retardation of the electron-hole recombination will increase the photocatalytic efficiency of the SiO\(_2\) NPs photocatalysts and, consequently, accelerate hydroxyl radical formation which will enhance the rate of MR degradation.\(^{37,38}\) Equations 10–12:

\[
\text{Ag or Au} + e^-_{cb} \rightarrow \text{Ag}(e^-_{cb}) \text{ or Au}(e^-_{cb}) \tag{10}
\]

\[
\text{Ag}(e^-_{cb}) \text{ or Au}(e^-_{cb}) + \text{H}^+ \rightarrow \text{Ag or Au} + \text{H}_2 \tag{11}
\]

\[
\text{Ag}(e^-_{cb}) \text{ or Au}(e^-_{cb}) + \text{O}_2 \rightarrow \text{Ag} \text{ or Au} \tag{12}
\]

\[
\text{Au} + \text{O}_2^+ + (\text{H}^+ + \cdot \text{OH}) \rightarrow \text{HO}_2^- + \cdot \text{OH}.
\]

The mentioned mechanism accorded well with the experimental results. The most efficient catalyst was SiO\(_2\) NPs doped with Au\(^{3+}\) ions, because each Au\(^{3+}\) ion can consume three \(e^-_{cb}\) and generate three \(\cdot \text{OH}\) ions which are responsible for degradation of the dye. The SiO\(_2\) NPs doped with Ag\(^{2+}\) ions were less efficient due to the generation of only one \(\cdot \text{OH}\) by each Ag\(^{2+}\) ion.

Au NPs or Ag NPs deposited on the surface of SiO\(_2\) NPs act as electron–hole separation centres.\(^{39,40}\) Thermodynamically, the electron transfer from the SiO\(_2\) NP conduction band to the conduction band of the metal NPs, at the interface, occurs because the Fermi level of SiO\(_2\) is higher than that of Au NPs or Ag NPs.\(^{41}\) Consequently, a Schottky barrier at the Au NPs or Ag NPs SiO\(_2\) NPs contact region is formed, which improves the charge separation and enhances the photocatalytic activity of SiO\(_2\). The energy difference between the valence and conduction bands of Au NPs is lower than that of Ag NPs. This allows Ag NPs to increase the activity of SiO\(_2\) NPs more than do Au NPs.

The hydroxide attack might be responsible for the discoloration mechanism of the MR dye, as summarised in the schematic diagram (Fig. 4). Including the proposed steps, the hydroxide radical is assumed to interact with MR or the intermediate photoproducts as follows: first the \(\cdot \text{OH}\) attacks MR which leads to formation of a dehydrogenated radical (intermediate 2). From this point, intermediate 2 can either undergo ring opening or...
combination with \(\cdot \text{OH} \), forming hydroxyl product 3. The hydroxyl product causes the broadening in the absorption spectra of the remaining MR, as shown in Fig. 2. The intermediate 2 might also be decomposed to form a new low molecular weight byproduct, which has a blue-shifted absorption compared to the MR monomer \((\lambda_{\text{max}} \sim 415 \text{ nm})\). This peak, which might correspond to a low molecular weight byproduct formation, was found to increase as the rate of the photocatalytic reaction decreased (decreasing the catalytic power of silica as shown in the profile of pure silica). Product 3 can be further attacked by \(\cdot \text{OH} \) to form bi-hydroxyl products 4 and 5 or a dehydrogenated radical which undergoes ring opening. The same procedure could take place for products 4 and 5 until complete ring opening and final mineralisation.

Received 18 May. Accepted 27 July 2009